Move token counting to model detail.
This commit is contained in:
parent
91885384a1
commit
a08d8bcd54
|
@ -1,44 +1,18 @@
|
|||
<script context="module" lang="ts">
|
||||
import { countTokens, getDeliminator, getLeadPrompt, getModelDetail, getRoleEnd, getRoleTag, getStartSequence } from './Models.svelte'
|
||||
import { getModelDetail } from './Models.svelte'
|
||||
import type { Chat, Message, Model, Usage } from './Types.svelte'
|
||||
|
||||
export const getPrice = (tokens: Usage, model: Model): number => {
|
||||
const t = getModelDetail(model)
|
||||
return ((tokens.prompt_tokens * t.prompt) + (tokens.completion_tokens * t.completion))
|
||||
return ((tokens.prompt_tokens * (t.prompt || 0)) + (tokens.completion_tokens * (t.completion || 0)))
|
||||
}
|
||||
|
||||
export const countPromptTokens = (prompts:Message[], model:Model, chat: Chat):number => {
|
||||
const detail = getModelDetail(model)
|
||||
const count = prompts.reduce((a, m) => {
|
||||
a += countMessageTokens(m, model, chat)
|
||||
return a
|
||||
}, 0)
|
||||
switch (detail.type) {
|
||||
case 'Petals':
|
||||
return count + countTokens(model, getStartSequence(chat)) + countTokens(model, getLeadPrompt(chat))
|
||||
case 'OpenAIChat':
|
||||
default:
|
||||
// Not sure how OpenAI formats it, but this seems to get close to the right counts.
|
||||
// Would be nice to know. This works for gpt-3.5. gpt-4 could be different.
|
||||
// Complete stab in the dark here -- update if you know where all the extra tokens really come from.
|
||||
return count + 3 // Always seems to be message counts + 3
|
||||
}
|
||||
return getModelDetail(model).countPromptTokens(prompts, model, chat)
|
||||
}
|
||||
|
||||
export const countMessageTokens = (message:Message, model:Model, chat: Chat):number => {
|
||||
const detail = getModelDetail(model)
|
||||
const delim = getDeliminator(chat)
|
||||
switch (detail.type) {
|
||||
case 'Petals':
|
||||
return countTokens(model, getRoleTag(message.role, model, chat) + ': ' +
|
||||
message.content + getRoleEnd(message.role, model, chat) + (delim || '###'))
|
||||
case 'OpenAIChat':
|
||||
default:
|
||||
// Not sure how OpenAI formats it, but this seems to get close to the right counts.
|
||||
// Would be nice to know. This works for gpt-3.5. gpt-4 could be different.
|
||||
// Complete stab in the dark here -- update if you know where all the extra tokens really come from.
|
||||
return countTokens(model, '## ' + message.role + ' ##:\r\n\r\n' + message.content + '\r\n\r\n\r\n')
|
||||
}
|
||||
return getModelDetail(model).countMessageTokens(message, model, chat)
|
||||
}
|
||||
|
||||
export const getModelMaxTokens = (model:Model):number => {
|
||||
|
|
|
@ -281,13 +281,15 @@ export type ModelDetail = {
|
|||
leadPrompt?: string,
|
||||
prompt?: number;
|
||||
completion?: number;
|
||||
max?: number;
|
||||
max: number;
|
||||
opt?: Record<string, any>;
|
||||
preFillMerge?: (existingContent:string, newContent:string)=>string;
|
||||
enabled?: boolean;
|
||||
hide?: boolean;
|
||||
check: (modelDetail: ModelDetail) => Promise<void>;
|
||||
getTokens: (val: string) => number[];
|
||||
countPromptTokens: (prompts:Message[], model:Model, chat: Chat) => number;
|
||||
countMessageTokens: (message:Message, model:Model, chat: Chat) => number;
|
||||
getEndpoint: (model: Model) => string;
|
||||
help: string;
|
||||
hideSetting: (chatId: number, setting: ChatSetting) => boolean;
|
||||
|
|
|
@ -1,7 +1,9 @@
|
|||
<script context="module" lang="ts">
|
||||
import { getApiBase, getEndpointCompletions, getEndpointGenerations } from '../../ApiUtil.svelte'
|
||||
import { countTokens } from '../../Models.svelte'
|
||||
import { countMessageTokens } from '../../Stats.svelte'
|
||||
import { globalStorage } from '../../Storage.svelte'
|
||||
import type { ModelDetail } from '../../Types.svelte'
|
||||
import type { Chat, Message, Model, ModelDetail } from '../../Types.svelte'
|
||||
import { chatRequest, imageRequest } from './request.svelte'
|
||||
import { checkModel } from './util.svelte'
|
||||
import { encode } from 'gpt-tokenizer'
|
||||
|
@ -38,7 +40,19 @@ const chatModelBase = {
|
|||
check: checkModel,
|
||||
getTokens: (value) => encode(value),
|
||||
getEndpoint: (model) => get(globalStorage).openAICompletionEndpoint || (getApiBase() + getEndpointCompletions()),
|
||||
hideSetting: (chatId, setting) => !!hiddenSettings[setting.key]
|
||||
hideSetting: (chatId, setting) => !!hiddenSettings[setting.key],
|
||||
countMessageTokens: (message:Message, model:Model, chat: Chat) => {
|
||||
return countTokens(model, '## ' + message.role + ' ##:\r\n\r\n' + message.content + '\r\n\r\n\r\n')
|
||||
},
|
||||
countPromptTokens: (prompts:Message[], model:Model, chat: Chat):number => {
|
||||
// Not sure how OpenAI formats it, but this seems to get close to the right counts.
|
||||
// Would be nice to know. This works for gpt-3.5. gpt-4 could be different.
|
||||
// Complete stab in the dark here -- update if you know where all the extra tokens really come from.
|
||||
return prompts.reduce((a, m) => {
|
||||
a += countMessageTokens(m, model, chat)
|
||||
return a
|
||||
}, 0) + 3 // Always seems to be message counts + 3
|
||||
}
|
||||
} as ModelDetail
|
||||
|
||||
// Reference: https://openai.com/pricing#language-models
|
||||
|
|
|
@ -1,7 +1,9 @@
|
|||
<script context="module" lang="ts">
|
||||
import { getPetalsBase, getPetalsWebsocket } from '../../ApiUtil.svelte'
|
||||
import { countTokens, getDeliminator, getLeadPrompt, getRoleEnd, getRoleTag, getStartSequence } from '../../Models.svelte'
|
||||
import { countMessageTokens } from '../../Stats.svelte'
|
||||
import { globalStorage } from '../../Storage.svelte'
|
||||
import type { ModelDetail } from '../../Types.svelte'
|
||||
import type { Chat, Message, Model, ModelDetail } from '../../Types.svelte'
|
||||
import { chatRequest } from './request.svelte'
|
||||
import { checkModel } from './util.svelte'
|
||||
import llamaTokenizer from 'llama-tokenizer-js'
|
||||
|
@ -33,7 +35,18 @@ const chatModelBase = {
|
|||
request: chatRequest,
|
||||
getEndpoint: (model) => get(globalStorage).pedalsEndpoint || (getPetalsBase() + getPetalsWebsocket()),
|
||||
getTokens: (value) => llamaTokenizer.encode(value),
|
||||
hideSetting: (chatId, setting) => !!hideSettings[setting.key]
|
||||
hideSetting: (chatId, setting) => !!hideSettings[setting.key],
|
||||
countMessageTokens: (message:Message, model:Model, chat: Chat):number => {
|
||||
const delim = getDeliminator(chat)
|
||||
return countTokens(model, getRoleTag(message.role, model, chat) + ': ' +
|
||||
message.content + getRoleEnd(message.role, model, chat) + (delim || '###'))
|
||||
},
|
||||
countPromptTokens: (prompts:Message[], model:Model, chat: Chat):number => {
|
||||
return prompts.reduce((a, m) => {
|
||||
a += countMessageTokens(m, model, chat)
|
||||
return a
|
||||
}, 0) + countTokens(model, getStartSequence(chat)) + countTokens(model, getLeadPrompt(chat))
|
||||
}
|
||||
} as ModelDetail
|
||||
|
||||
export const chatModels : Record<string, ModelDetail> = {
|
||||
|
|
Loading…
Reference in New Issue