241 lines
7.6 KiB
Plaintext
241 lines
7.6 KiB
Plaintext
|
#include "mat_mul.h"
|
||
|
|
||
|
#include <cstdio>
|
||
|
#include <cuda_runtime.h>
|
||
|
|
||
|
#define CUDA_CALL(d, f) \
|
||
|
{ \
|
||
|
cudaError_t err = (f); \
|
||
|
if (err != cudaSuccess) { \
|
||
|
fprintf(stderr, "[GPU %d] CUDA error at [%s:%d] %d %s\n", \
|
||
|
(d), __FILE__, __LINE__, err, cudaGetErrorString(err)); \
|
||
|
exit(1); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define MAX_NUM_GPU 4
|
||
|
int num_devices = 0;
|
||
|
|
||
|
// A: M rows, K columns
|
||
|
// B: K rows, N columns
|
||
|
// C: M rows, N columns
|
||
|
//
|
||
|
// N
|
||
|
// o-----o
|
||
|
// | |
|
||
|
// K | [B] |
|
||
|
// | |
|
||
|
// o-----o
|
||
|
// K N
|
||
|
// o-------o o-----o
|
||
|
// M | [A] | M | [C] |
|
||
|
// | | | |
|
||
|
// o-------o o-----o
|
||
|
//
|
||
|
|
||
|
#define TS_M 64 // The tile-size in dimension M
|
||
|
#define TS_N 64 // The tile-size in dimension N
|
||
|
#define TS_K 64 // The tile-size in dimension K
|
||
|
#define WPT_M 16 // The amount of work-per-thread in dimension M
|
||
|
#define WPT_N 8 // The amount of work-per-thread in dimension N
|
||
|
|
||
|
#define CEIL_DIV(x,y) ( ((x) + (y) - 1) / (y) )
|
||
|
#define CEIL(x,y) ( CEIL_DIV((x),(y)) * (y) )
|
||
|
|
||
|
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K)
|
||
|
{
|
||
|
// Thread identifiers
|
||
|
const int row = threadIdx.x; // Local row ID (max: TS_M/WPT_M)
|
||
|
const int col = threadIdx.y; // Local col ID (max: TS_N/WPT_N)
|
||
|
const int globalRow = TS_M * blockIdx.x + row * WPT_M; // Row ID of C (0..M)
|
||
|
const int globalCol = TS_N * blockIdx.y + col * WPT_N; // Col ID of C (0..N)
|
||
|
|
||
|
// printf("[R%03d, C%03d] GR=%04d GC=%04d\n", row, col, globalRow, globalCol);
|
||
|
|
||
|
// Local memory to fit a tile of TS*TS elements of A and B
|
||
|
__shared__ float Asub[TS_M][TS_K];
|
||
|
__shared__ float Bsub[TS_K][TS_N];
|
||
|
|
||
|
// Initialize the accumulation registers
|
||
|
float acc[WPT_M][WPT_N];
|
||
|
for (int wm = 0; wm < WPT_M; wm++)
|
||
|
{
|
||
|
for (int wn = 0; wn < WPT_N; wn++)
|
||
|
{
|
||
|
acc[wm][wn] = 0.0f;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Loop over all tiles
|
||
|
const int numTiles = CEIL_DIV(K, TS_K);
|
||
|
for (int t = 0; t < numTiles; t++)
|
||
|
{
|
||
|
const int rowInB = TS_M * t + row * WPT_M;
|
||
|
const int colInA = TS_N * t + col * WPT_N;
|
||
|
|
||
|
// Load one tile of A and B into local memory
|
||
|
#pragma unroll
|
||
|
for (int wm = 0; wm < WPT_M; wm++)
|
||
|
{
|
||
|
#pragma unroll
|
||
|
for (int wn = 0; wn < WPT_N; wn++)
|
||
|
{
|
||
|
int r, c;
|
||
|
|
||
|
r = globalRow + wm;
|
||
|
c = colInA + wn;
|
||
|
Asub[row * WPT_M + wm][col * WPT_N + wn] = (r >= M || c >= K) ? 0.0f : A[r * K + c];
|
||
|
|
||
|
r = rowInB + wm;
|
||
|
c = globalCol + wn;
|
||
|
Bsub[row * WPT_M + wm][col * WPT_N + wn] = (r >= K || c >= N) ? 0.0f : B[r * N + c];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Synchronize to make sure the tile is loaded
|
||
|
__syncthreads();;
|
||
|
|
||
|
// Loop over the values of a single tile
|
||
|
for (int k = 0; k < TS_K; k++)
|
||
|
{
|
||
|
// Cache the values of Bsub in registers
|
||
|
float bs[WPT_N];
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int wn = 0; wn < WPT_N; wn++) {
|
||
|
bs[wn] = Bsub[k][col * WPT_N + wn];
|
||
|
}
|
||
|
|
||
|
// Perform the computation
|
||
|
#pragma unroll
|
||
|
for (int wm = 0; wm < WPT_M; wm++)
|
||
|
{
|
||
|
float a = Asub[row * WPT_M + wm][k];
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int wn = 0; wn < WPT_N; wn++)
|
||
|
{
|
||
|
acc[wm][wn] += a * bs[wn];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Synchronize before loading the next tile
|
||
|
__syncthreads();;
|
||
|
}
|
||
|
|
||
|
// Store the final results in C
|
||
|
#pragma unroll
|
||
|
for (int wm = 0; wm < WPT_M; wm++)
|
||
|
{
|
||
|
#pragma unroll
|
||
|
for (int wn = 0; wn < WPT_N; wn++)
|
||
|
{
|
||
|
int r = globalRow + wm;
|
||
|
int c = globalCol + wn;
|
||
|
|
||
|
if (r < M && c < N)
|
||
|
{
|
||
|
C[r * N + c] = acc[wm][wn];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Array of device (GPU) pointers
|
||
|
static float *a_d[MAX_NUM_GPU];
|
||
|
static float *b_d[MAX_NUM_GPU];
|
||
|
static float *c_d[MAX_NUM_GPU];
|
||
|
static int M, N, K;
|
||
|
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
|
||
|
|
||
|
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
|
||
|
|
||
|
// Launch kernel on every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
// dim3 blockDim(1, 1, 1);
|
||
|
// dim3 gridDim(Mend[i] - Mbegin[i], N, 1);
|
||
|
dim3 blockDim(CEIL_DIV(TS_M, WPT_M), CEIL_DIV(TS_N, WPT_N), 1);
|
||
|
dim3 gridDim(CEIL_DIV(Mend[i] - Mbegin[i], TS_M), CEIL_DIV(N, TS_N), 1);
|
||
|
|
||
|
CUDA_CALL( i, cudaSetDevice(i) );
|
||
|
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mbegin[i], N, K);
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( i, cudaSetDevice(i) );
|
||
|
CUDA_CALL( i, cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
|
||
|
M = _M, N = _N, K = _K;
|
||
|
|
||
|
CUDA_CALL( 0, cudaGetDeviceCount(&num_devices) );
|
||
|
if (num_devices > MAX_NUM_GPU)
|
||
|
{
|
||
|
num_devices = MAX_NUM_GPU;
|
||
|
}
|
||
|
|
||
|
printf("Using %d devices\n", num_devices);
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
cudaDeviceProp prop;
|
||
|
CUDA_CALL( i, cudaGetDeviceProperties(&prop, i) );
|
||
|
|
||
|
// Try printing more detailed information here
|
||
|
printf("[GPU %d] %s\n", i, prop.name);
|
||
|
}
|
||
|
|
||
|
if (num_devices <= 0) {
|
||
|
printf("No CUDA device found. Aborting\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
// Setup problem size for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
Mbegin[i] = (M / num_devices) * i;
|
||
|
Mend[i] = (M / num_devices) * (i + 1);
|
||
|
}
|
||
|
Mend[num_devices - 1] = M;
|
||
|
|
||
|
// Allocate device memory for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( i, cudaSetDevice(i) );
|
||
|
CUDA_CALL( i, cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
|
||
|
CUDA_CALL( i, cudaMalloc(&b_d[i], K * N * sizeof(float)) );
|
||
|
CUDA_CALL( i, cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
|
||
|
}
|
||
|
|
||
|
// Upload A and B matrix to every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( i, cudaSetDevice(i) );
|
||
|
CUDA_CALL( i, cudaMemcpy(a_d[i], A + Mbegin[i] * K,
|
||
|
(Mend[i] - Mbegin[i]) * K * sizeof(float),
|
||
|
cudaMemcpyHostToDevice) );
|
||
|
CUDA_CALL( i, cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( i, cudaSetDevice(i) );
|
||
|
CUDA_CALL( i, cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
|
||
|
// Do any post-matmul cleanup work here.
|
||
|
|
||
|
// Download C matrix from GPUs
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( i, cudaMemcpy(C + Mbegin[i] * N, c_d[i],
|
||
|
(Mend[i] - Mbegin[i]) * N * sizeof(float),
|
||
|
cudaMemcpyDeviceToHost) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( i, cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|