chundoong-lab-ta/SamsungDS22/submissions/final/kaye.jeong/B_/convolution_jh.cu

211 lines
6.3 KiB
Plaintext
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include <cstdio>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h> // cudaDeviceSynchronize()
#include "convolution.h"
#include <mpi.h>
//#include <stdio.h>
#include "util.h"
#include <omp.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define MAX_NUM_GPU 4
#define TS 8
static float *input, *output, *filter;
static float *in_d[MAX_NUM_GPU], *out_d[MAX_NUM_GPU], *fil_d[MAX_NUM_GPU];
static int N, C, H, W;
static int K, R, S;
//static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
static int num_devices = 1;
static int size[2];
static int NN[MAX_NUM_GPU];
//static int OH, OW;
//void convolution(
__global__ void conv(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
const int globalRow= blockDim.x * blockIdx.x + threadIdx.x;
const int globalCol= blockDim.y * blockIdx.y + threadIdx.y;
int OH, OW;
// input = _input;
// output = _output;
// filter = _filter;
OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1;
OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1;
int n,k,w;
w=globalCol;
n=w/(_K*OW);
w=w-n*(_K*OW);
k=w/OW;
w=w-k*OW;
int col=w;
int row=globalRow;
if(globalRow>=OH || globalCol >= _N*_K*OW) return;
int start_row = row * _stride - _pad;
int start_col = col * _stride - _pad;
float o=0.0f;
if (mpi_rank == 0) {
for (int c = 0; c < _C; c++) {
for (int i = 0; i < _R; i++) {
for (int j = 0; j < _S; j++) {
int h = start_row + i * _dilation;
int w = start_col + j * _dilation;
if(h<0 || w<0 || h>=_H || w<=_W) continue;
float in=_input[n * _C * _H * _W + c * _H * W + h * _W + w];
float fil=_filter[k * _C * _R * _S + c * _R * _S + i * _S + j];
o += in * fil;
}
}
}
_output[n * _K * OH * OW + k * OH * OW + row*OW + col] = o;
}
}
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
int offset=0;
MPI_Request request;
MPI_Status status;
input = _input;
output = _output;
filter = _filter;
if (mpi_rank == 0 && mpi_world_size == 2 && size[1] !=0) {
MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
MPI_Isend(filter, _K*_C*_R*_S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
if(size[mpi_rank]<MAX_NUM_GPU) {
num_devices = size[mpi_rank];
}
} else if (mpi_rank==1 && size[mpi_rank] != 0) {
alloc_tensor(&input, size[1], C, H, W);
alloc_tensor(&output, size[1], K, OH, OW);
alloc_tensor(&filter, _K, _C, _R, _S);
MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Recv(filter, _K*_C*_R*_S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
if(size[mpi_rank]<MAX_NUM_GPU) {
num_devices = size[mpi_rank];
}
}
offset=0;
for(int i=0; i<num_devices; i++) {
CUDA_CALL(cudaMemcopy(in_d[i], input+offset, NN[i]*C*H*W*sizeof(float), cudaMemcpyHostToDevice));
CUDA_CALL(cudaMemcopy(fil_d[i], filter, K*C*R*S*sizeof(float), cudaMemcpyHostToDevice));
offset += NN[i]*C*H*W;
}
for(int i=0; i<num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
for(int i=0; i<num_devices; i++) {
dim3 gridDim((OH+TS-1)/TS, (NN[i]*K*OW+TS-1)/TS,1);
dim3 blockDim(TS,TS,1);
CUDA_CALL( cudaSetDevice(i));
conv<<<gridDim, blockDim>>>(in_d[i], out_d[i], fil_d[i], NN[i],_C,_H,_W,_K,_R,_S,_pad,_dilation,_stride);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
offset=0;
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMemcpy(output+offset, out_d[i],
NN[i]*K*OH*OW*sizeof(float),
// (Mend[i] - Mbegin[i]) * K * sizeof(float),
cudaMemcpyDeviceToHost) );
offset += NN[i]*K*OH*OW;
}
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
if (mpi_rank == 0 && mpi_world_size == 2 && size[1] !=0) {
MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status);
} else if(mpi_rank ==1 && size[1] != 0) {
MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT,0,0,MPI_COMM_WORLD,&request);
}
}
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
if(mpi_world_size==2 && _N>4) size[1]=_N/2;
else size[1]=0;
size[0]=N-size[1];
if(size[mpi_rank]<MAX_NUM_GPU) {
num_devices=size[mpi_rank];
for(int i=0;i<size[mpi_rank];i++)
NN[i]=1;
} else {
num_devices=MAX_NUM_GPU;
int quotient = size[mpi_rank]/MAX_NUM_GPU;
int remain = size[mpi_rank]%MAX_NUM_GPU;
for(int i=0; i<MAX_NUM_GPU; i++) {
NN[i]=quotient;
if(i<remain) NN[i]++;
}
}
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&in_d[i], NN[i]*C*H*W*sizeof(float)) );
CUDA_CALL( cudaMalloc(&out_d[i], NN[i]*K*OH*OW*sizeof(float)) );
CUDA_CALL( cudaMalloc(&fil_d[i], K*C*R*S*sizeof(float)) );
}
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
}