chundoong-lab-ta/APWS23/ans/matmul_buffering_ans.cu

69 lines
2.3 KiB
Plaintext
Raw Normal View History

2023-02-10 16:38:51 +09:00
#include <cstdio>
2023-02-09 01:28:51 +09:00
#include "matmul.h"
2023-02-10 16:38:51 +09:00
static __global__ void matmul_kernel(float *A, float *B, float *C, int M, int N,
int K) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
int j = blockDim.y * blockIdx.y + threadIdx.y;
if (i >= M || j >= N) return;
float sum = 0.0;
for (int k = 0; k < K; ++k) sum += A[i * K + k] * B[k * N + j];
C[i * N + j] = sum;
}
#define BLOCKS 4
static size_t Mbegin[BLOCKS], Mend[BLOCKS];
static cudaStream_t data_stream, calc_stream;
static cudaEvent_t events[BLOCKS];
static float *A_gpu, *B_gpu, *C_gpu;
2023-02-09 01:28:51 +09:00
void matmul_buffering_initialize(size_t M, size_t N, size_t K) {
2023-02-10 16:38:51 +09:00
for (size_t i = 0; i < BLOCKS; i++) {
Mbegin[i] = M / BLOCKS * i;
Mend[i] = M / BLOCKS * (i + 1);
if (i == BLOCKS - 1) Mend[i] = M;
}
cudaStreamCreate(&data_stream);
cudaStreamCreate(&calc_stream);
for (int i = 0; i < BLOCKS; i++) { cudaEventCreate(&events[i]); }
cudaMalloc(&A_gpu, M * K * sizeof(float));
cudaMalloc(&B_gpu, K * N * sizeof(float));
cudaMalloc(&C_gpu, M * N * sizeof(float));
2023-02-09 01:28:51 +09:00
}
2023-02-10 16:38:51 +09:00
void matmul_buffering(float *A, float *B, float *C, size_t M, size_t N,
size_t K) {
cudaMemcpyAsync(B_gpu, B, K * N * sizeof(float), cudaMemcpyHostToDevice,
data_stream);
for (int i = 0; i < BLOCKS; i++) {
cudaMemcpyAsync(&A_gpu[Mbegin[i] * K], &A[Mbegin[i] * K],
(Mend[i] - Mbegin[i]) * K * sizeof(float),
cudaMemcpyHostToDevice, data_stream);
cudaEventRecord(events[i], data_stream);
}
for (int i = 0; i < BLOCKS; i++) {
dim3 blockDim(32, 32);
dim3 gridDim((Mend[i] - Mbegin[i] + 32 - 1) / 32, (N + 32 - 1) / 32);
cudaStreamWaitEvent(calc_stream, events[i]);
matmul_kernel<<<gridDim, blockDim, 0, calc_stream>>>(&A_gpu[Mbegin[i] * K], B_gpu,
&C_gpu[Mbegin[i] * N], (Mend[i] - Mbegin[i]), N, K);
}
cudaStreamSynchronize(calc_stream);
cudaMemcpyAsync(C, C_gpu, M * N * sizeof(float), cudaMemcpyDeviceToHost, data_stream);
cudaStreamSynchronize(data_stream);
2023-02-09 01:28:51 +09:00
}
void matmul_buffering_finalize(size_t M, size_t N, size_t K) {
2023-02-10 16:38:51 +09:00
cudaFree(A_gpu);
cudaFree(B_gpu);
cudaFree(C_gpu);
cudaStreamDestroy(data_stream);
cudaStreamDestroy(calc_stream);
for (int i = 0; i < BLOCKS; i++) { cudaEventDestroy(events[i]); }
2023-02-09 01:28:51 +09:00
}