149 lines
4.7 KiB
Plaintext
149 lines
4.7 KiB
Plaintext
|
#include "convolution.h"
|
||
|
|
||
|
#include <cstdio>
|
||
|
#include <cuda_runtime.h>
|
||
|
|
||
|
#define CUDA_CALL(f) \
|
||
|
{ \
|
||
|
cudaError_t err = (f); \
|
||
|
if (err != cudaSuccess) { \
|
||
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
|
||
|
err, cudaGetErrorString(err)); \
|
||
|
exit(1); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define MAX_NUM_GPU 4
|
||
|
int num_devices = 0;
|
||
|
|
||
|
__global__ void conv_kernel(float *input, float *filter, float *output,
|
||
|
int N, int C, int H, int W,
|
||
|
int K, int R, int S,
|
||
|
int pad, int dilation, int stride) {
|
||
|
|
||
|
int n = blockIdx.x;
|
||
|
int k = blockIdx.y;;
|
||
|
int oh = blockIdx.z;
|
||
|
int ow = threadIdx.x;
|
||
|
int OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
|
||
|
int OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
|
||
|
|
||
|
float o = 0.f;
|
||
|
for (int c = 0; c < C; ++c) {
|
||
|
for (int r = 0; r < R; ++r) {
|
||
|
for (int s = 0; s < S; ++s) {
|
||
|
int h = oh * stride - pad + r * dilation;
|
||
|
int w = ow * stride - pad + s * dilation;
|
||
|
if (h < 0 || h >= H || w < 0 || w >= W) continue;
|
||
|
float i = input[n * C * H * W + c * H * W + h * W + w];
|
||
|
float f = filter[k * C * R * S + c * R * S + r * S + s];
|
||
|
o += i * f;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
|
||
|
|
||
|
}
|
||
|
|
||
|
// Array of device (GPU) pointers
|
||
|
static float *a_d[MAX_NUM_GPU];
|
||
|
static float *b_d[MAX_NUM_GPU];
|
||
|
static float *c_d[MAX_NUM_GPU];
|
||
|
static int N, C, H, W;
|
||
|
static int K, R, S;
|
||
|
static int OH, OW;
|
||
|
static int pad;
|
||
|
static int dilation;
|
||
|
static int stride;
|
||
|
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
|
||
|
|
||
|
|
||
|
void cuda_conv() {
|
||
|
|
||
|
// Launch kernel on every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
dim3 blockDim(OW, 1, 1);
|
||
|
dim3 gridDim(Mend[i] - Mbegin[i], K, OH);
|
||
|
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
conv_kernel<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], Mend[i]-Mbegin[i], C, H, W, K, R, S, pad, dilation, stride);
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void cuda_mem_init(int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) {
|
||
|
N = _N; C = _C; H = _H; W = _W;
|
||
|
K = _K; R = _R; S = _S;
|
||
|
pad = _pad;
|
||
|
dilation = _dilation;
|
||
|
stride = _stride;
|
||
|
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
|
||
|
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
|
||
|
|
||
|
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
|
||
|
|
||
|
//printf("Using %d devices\n", num_devices);
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
cudaDeviceProp prop;
|
||
|
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
|
||
|
|
||
|
// Try printing more detailed information here
|
||
|
//printf("[GPU %d] %s\n", i, prop.name);
|
||
|
}
|
||
|
|
||
|
if (num_devices <= 0) {
|
||
|
printf("No CUDA device found. Aborting\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
// Setup problem size for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
Mbegin[i] = (N / num_devices) * i;
|
||
|
Mend[i] = (N / num_devices) * (i + 1);
|
||
|
}
|
||
|
Mend[num_devices - 1] = N;
|
||
|
|
||
|
// Allocate device memory for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * C * H * W * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&b_d[i], K * C * R * S * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * K * OH * OW * sizeof(float)) );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void cuda_conv_init(float *input, float *filter, float *output) {
|
||
|
// Upload A and B matrix to every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(a_d[i], input + Mbegin[i] * C * H * W,
|
||
|
(Mend[i] - Mbegin[i]) * C * H * W * sizeof(float),
|
||
|
cudaMemcpyHostToDevice) );
|
||
|
CUDA_CALL( cudaMemcpy(b_d[i], filter, K * C * R * S * sizeof(float), cudaMemcpyHostToDevice) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void cuda_conv_final(float *output) {
|
||
|
// Do any post-matmul cleanup work here.
|
||
|
|
||
|
// Download C matrix from GPUs
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(output + Mbegin[i] * K * OH * OW, c_d[i],
|
||
|
(Mend[i] - Mbegin[i]) * K * OH * OW * sizeof(float),
|
||
|
cudaMemcpyDeviceToHost) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|