129 lines
3.9 KiB
Plaintext
129 lines
3.9 KiB
Plaintext
|
#include "matmul.h"
|
||
|
#include "util.h"
|
||
|
|
||
|
#include <cuda_runtime.h>
|
||
|
#include <mpi.h>
|
||
|
|
||
|
#define CUDA_CALL(f) \
|
||
|
{ \
|
||
|
cudaError_t err = (f); \
|
||
|
if (err != cudaSuccess) { \
|
||
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
|
||
|
err, cudaGetErrorString(err)); \
|
||
|
exit(1); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define MAX_NUM_GPU 4
|
||
|
int num_devices = 0;
|
||
|
|
||
|
__global__ void matmul_kernel(float *A, float *B, float *C, int M, int N,
|
||
|
int K) {
|
||
|
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||
|
int j = blockDim.y * blockIdx.y + threadIdx.y;
|
||
|
if (i >= M || j >= N)
|
||
|
return;
|
||
|
|
||
|
C[i * N + j] = 0;
|
||
|
for (int k = 0; k < K; ++k) {
|
||
|
C[i * N + j] += A[i * K + k] * B[k * N + j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int mpi_rank, mpi_world_size;
|
||
|
|
||
|
// Array of device (GPU) pointers
|
||
|
static float *a_d[MAX_NUM_GPU];
|
||
|
static float *b_d[MAX_NUM_GPU];
|
||
|
static float *c_d[MAX_NUM_GPU];
|
||
|
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
|
||
|
|
||
|
void matmul(const float *A, const float *B, float *C, int M, int N, int K) {
|
||
|
|
||
|
// Upload A and B matrix to every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL(cudaMemcpy(a_d[i], A + Mbegin[i] * K,
|
||
|
(Mend[i] - Mbegin[i]) * K * sizeof(float),
|
||
|
cudaMemcpyHostToDevice));
|
||
|
CUDA_CALL(
|
||
|
cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice));
|
||
|
}
|
||
|
|
||
|
// Launch kernel on every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
dim3 blockDim(1, 1, 1);
|
||
|
dim3 gridDim(Mend[i] - Mbegin[i], N, 1);
|
||
|
|
||
|
CUDA_CALL(cudaSetDevice(i));
|
||
|
matmul_kernel<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], M, N, K);
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL(cudaDeviceSynchronize());
|
||
|
}
|
||
|
|
||
|
// Download C matrix from GPUs
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL(cudaMemcpy(C + Mbegin[i] * N, c_d[i],
|
||
|
(Mend[i] - Mbegin[i]) * N * sizeof(float),
|
||
|
cudaMemcpyDeviceToHost));
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL(cudaDeviceSynchronize());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void matmul_initialize(int M, int N, int K) {
|
||
|
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
|
||
|
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
|
||
|
|
||
|
// Only root process do something
|
||
|
if (mpi_rank == 0) {
|
||
|
CUDA_CALL(cudaGetDeviceCount(&num_devices));
|
||
|
|
||
|
printf("Using %d devices\n", num_devices);
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
cudaDeviceProp prop;
|
||
|
CUDA_CALL(cudaGetDeviceProperties(&prop, i));
|
||
|
|
||
|
// Try printing more detailed information here
|
||
|
printf("GPU %d: %s\n", i, prop.name);
|
||
|
}
|
||
|
|
||
|
if (num_devices <= 0) {
|
||
|
printf("No CUDA device found. Aborting\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
// Setup problem size for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
Mbegin[i] = (M / num_devices) * i;
|
||
|
Mend[i] = (M / num_devices) * (i + 1);
|
||
|
}
|
||
|
Mend[num_devices - 1] = M;
|
||
|
|
||
|
// Allocate device memory for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL(cudaSetDevice(i));
|
||
|
CUDA_CALL(cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)));
|
||
|
CUDA_CALL(cudaMalloc(&b_d[i], K * N * sizeof(float)));
|
||
|
CUDA_CALL(cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void matmul_finalize() {
|
||
|
|
||
|
// Only root process do something
|
||
|
if (mpi_rank == 0) {
|
||
|
// Free all GPU memory
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL(cudaFree(a_d[i]));
|
||
|
CUDA_CALL(cudaFree(b_d[i]));
|
||
|
CUDA_CALL(cudaFree(c_d[i]));
|
||
|
}
|
||
|
}
|
||
|
}
|