211 lines
7.0 KiB
Plaintext
211 lines
7.0 KiB
Plaintext
|
#include "convolution.h"
|
||
|
#include <cstdio>
|
||
|
#include <cuda_runtime.h>
|
||
|
#include <mpi.h>
|
||
|
#include <stdio.h>
|
||
|
|
||
|
#define MAX_NUM_GPU 4
|
||
|
#define MAX_NUM_NODE 2
|
||
|
#define TS 32
|
||
|
#define WPT 8
|
||
|
#define RTS TS/WPT
|
||
|
int num_devices = 0;
|
||
|
|
||
|
#define CUDA_CALL(f) \
|
||
|
{ \
|
||
|
cudaError_t err = (f); \
|
||
|
if (err != cudaSuccess) { \
|
||
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
|
||
|
err, cudaGetErrorString(err)); \
|
||
|
exit(1); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
void my_alloc_tensor(float **t, int D0, int D1, int D2, int D3) {
|
||
|
*t = (float *) aligned_alloc(32, sizeof(float) * D0 * D1 * D2 * D3);
|
||
|
if (*t == NULL) {
|
||
|
printf("Failed to allocate memory for matrix.\n");
|
||
|
exit(0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__global__ void sgemm(float *input, float *filter, float *output, int N, int C, int H, int W, int K, int R, int S, int pad, int dilation, int stride) {
|
||
|
int n = blockIdx.x;
|
||
|
int k = blockIdx.y;
|
||
|
int oh = blockIdx.z;
|
||
|
int ow = threadIdx.x;
|
||
|
|
||
|
const int OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
|
||
|
const int OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
|
||
|
|
||
|
float o = 0.f;
|
||
|
for (int c = 0; c < C; ++c) {
|
||
|
for (int r = 0; r < R; ++r) {
|
||
|
for (int s = 0; s < S; ++s) {
|
||
|
int h = oh * stride - pad + r * dilation;
|
||
|
int w = ow * stride - pad + s * dilation;
|
||
|
if (h < 0 || h >= H || w < 0 || w >= W) continue;
|
||
|
float i = input[n * C * H * W + c * H * W + h * W + w];
|
||
|
float f = filter[k * C * R * S + c * R * S + r * S + s];
|
||
|
o += i * f;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
|
||
|
}
|
||
|
|
||
|
static float *input, *output, *filter;
|
||
|
static int N, C, H, W;
|
||
|
static int K, R, S;
|
||
|
static int OH, OW;
|
||
|
static int pad;
|
||
|
static int dilation;
|
||
|
static int stride;
|
||
|
static int mpi_rank, mpi_world_size;
|
||
|
|
||
|
// Array of device (GPU) pointers
|
||
|
static float *input_d[MAX_NUM_GPU];
|
||
|
static float *output_d[MAX_NUM_GPU];
|
||
|
static float *filter_d[MAX_NUM_GPU];
|
||
|
static int Nbegin[MAX_NUM_NODE], Nend[MAX_NUM_NODE];
|
||
|
static int begin[MAX_NUM_GPU], end[MAX_NUM_GPU];
|
||
|
//static int split_N[MAX_NUM_GPU];
|
||
|
|
||
|
void convolution(float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) {
|
||
|
input = _input;
|
||
|
output = _output;
|
||
|
filter = _filter;
|
||
|
|
||
|
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
|
||
|
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
|
||
|
|
||
|
if (mpi_rank >= mpi_world_size) return;
|
||
|
|
||
|
//if(mpi_rank != 0){
|
||
|
// my_alloc_tensor(&input, N, C, H, W);
|
||
|
// my_alloc_tensor(&output, N, K, OH, OW);
|
||
|
// my_alloc_tensor(&filter, K, C, R, S);
|
||
|
//}
|
||
|
|
||
|
if (mpi_rank != 0){
|
||
|
input = (float *) aligned_alloc(32, sizeof(float) * N*C*H*W);
|
||
|
filter = (float *) aligned_alloc(32, sizeof(float) * K*C*R*S);
|
||
|
output = (float *) aligned_alloc(32, sizeof(float) * N*K*OH*OW);
|
||
|
}
|
||
|
|
||
|
// Scatter A
|
||
|
if (mpi_rank == 0) {
|
||
|
for (int i=1; i<mpi_world_size; i++) {
|
||
|
MPI_Send(&input[Nbegin[i]*C*H*W], (Nend[i]-Nbegin[i])*C*H*W, MPI_FLOAT, i, 0, MPI_COMM_WORLD);
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
MPI_Recv(&input[Nbegin[mpi_rank]*C*H*W], (Nend[mpi_rank]-Nbegin[mpi_rank])*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, nullptr);
|
||
|
}
|
||
|
|
||
|
MPI_Bcast(filter, K*C*R*S, MPI_FLOAT, 0, MPI_COMM_WORLD);
|
||
|
|
||
|
// Upload A and B matrix to every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(input_d[i], input+begin[i]*C*H*W, (end[i]-begin[i])*C*H*W*sizeof(float), cudaMemcpyHostToDevice) );
|
||
|
CUDA_CALL( cudaMemcpy(filter_d[i], filter, K*C*R*S*sizeof(float), cudaMemcpyHostToDevice) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
|
||
|
// Launch kernel on every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
dim3 gridDim(end[i]-begin[i], K, OH);
|
||
|
dim3 blockDim(OW, 1, 1);
|
||
|
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
sgemm<<<gridDim, blockDim>>>(input_d[i], filter_d[i], output_d[i], end[i]-begin[i], C, H, W, K, R, S, pad, dilation, stride);
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
|
||
|
// Download C matrix from GPUs
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(output+begin[i]*K*OH*OW, output_d[i], (end[i]-begin[i])*K*OH*OW*sizeof(float), cudaMemcpyDeviceToHost) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
|
||
|
if(mpi_rank == 0){
|
||
|
for(int i=1; i<mpi_world_size; ++i){
|
||
|
MPI_Recv(&output[Nbegin[i]*K*OH*OW], (Nend[i]-Nbegin[i])*K*OH*OW, MPI_FLOAT, i, 0, MPI_COMM_WORLD, nullptr);
|
||
|
}
|
||
|
}
|
||
|
else{
|
||
|
MPI_Send(&output[Nbegin[mpi_rank]*K*OH*OW], (Nend[mpi_rank]-Nbegin[mpi_rank])*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void convolution_init(int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) {
|
||
|
N = _N; C = _C; H = _H; W = _W;
|
||
|
K = _K; R = _R; S = _S;
|
||
|
pad = _pad;
|
||
|
dilation = _dilation;
|
||
|
stride = _stride;
|
||
|
|
||
|
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
|
||
|
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
|
||
|
|
||
|
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
|
||
|
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
|
||
|
|
||
|
if (mpi_rank >= mpi_world_size) return;
|
||
|
|
||
|
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
|
||
|
|
||
|
printf("Using %d devices\n", num_devices);
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
cudaDeviceProp prop;
|
||
|
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
|
||
|
|
||
|
// Try printing more detailed information here
|
||
|
printf("[GPU %d] %s\n", i, prop.name);
|
||
|
}
|
||
|
|
||
|
if (num_devices <= 0) {
|
||
|
printf("No CUDA device found. Aborting\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
// Setup problem size for each GPU
|
||
|
for (int i = 0; i < mpi_world_size; i++) {
|
||
|
Nbegin[i] = (N / mpi_world_size) * i;
|
||
|
Nend[i] = (N / mpi_world_size) * (i + 1);
|
||
|
}
|
||
|
Nend[mpi_world_size - 1] = N;
|
||
|
|
||
|
// Seupt problem size for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
begin[i] = Nbegin[mpi_rank] + (Nend[mpi_rank]-Nbegin[mpi_rank])/num_devices*i;
|
||
|
end[i] = Nbegin[mpi_rank] + (Nend[mpi_rank]-Nbegin[mpi_rank])/num_devices*(i+1);
|
||
|
}
|
||
|
end[num_devices - 1] = Nend[mpi_rank];
|
||
|
|
||
|
// Allocate device memory for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
CUDA_CALL( cudaMalloc(&input_d[i], (end[i]-begin[i])*C*H*W*sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&filter_d[i], K*C*R*S*sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&output_d[i], (end[i]-begin[i])*K*OH*OW*sizeof(float)) );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void convolution_final(int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) {
|
||
|
// Do any post-matmul cleanup work here.
|
||
|
if (mpi_rank >= mpi_world_size) return;
|
||
|
}
|