210 lines
6.3 KiB
Plaintext
210 lines
6.3 KiB
Plaintext
|
#include "convolution.h"
|
||
|
|
||
|
#include <mpi.h>
|
||
|
#include <stdio.h>
|
||
|
#include <cuda_runtime.h>
|
||
|
#include "util.h"
|
||
|
|
||
|
#define CUDA_CALL(f) \
|
||
|
{ \
|
||
|
cudaError_t err = (f); \
|
||
|
if (err != cudaSuccess) { \
|
||
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
|
||
|
err, cudaGetErrorString(err)); \
|
||
|
exit(1); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define MAX_NUM_GPU 4
|
||
|
#define TS 8
|
||
|
|
||
|
static float *input, *output, *filter;
|
||
|
static int N, C, H, W;
|
||
|
static int K, R, S;
|
||
|
static int OH, OW;
|
||
|
static int pad;
|
||
|
static int dilation;
|
||
|
static int stride;
|
||
|
static int mpi_rank, mpi_world_size;
|
||
|
|
||
|
static float *in_d[MAX_NUM_GPU], *out_d[MAX_NUM_GPU], *filter_d[MAX_NUM_GPU];
|
||
|
static int num_devices = 1;
|
||
|
static int Size[2];
|
||
|
static int NN[MAX_NUM_GPU];
|
||
|
|
||
|
__global__ void Convolution_cuda(
|
||
|
float *_input, float *_output, float *_filter,
|
||
|
int _N, int _C, int _H, int _W,
|
||
|
int _K, int _R, int _S,
|
||
|
int _pad, int _dilation, int _stride) {
|
||
|
|
||
|
const int global_row = blockDim.x * blockIdx.x + threadIdx.x ;
|
||
|
const int global_col = blockDim.y * blockIdx.y + threadIdx.y;
|
||
|
|
||
|
int OH, OW;
|
||
|
OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1;
|
||
|
OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1;
|
||
|
|
||
|
int n, k, w;
|
||
|
w = global_col;//
|
||
|
n = w / (_K * OW);//
|
||
|
w = w - n *(_K * OW);//
|
||
|
k = w / OW;//
|
||
|
w = w - k * OW;//
|
||
|
|
||
|
int col = w;
|
||
|
int row = global_row;
|
||
|
if (global_row >= OH || global_col >= _N*_K*OW) return;
|
||
|
|
||
|
int row_st = row * _stride - _pad;
|
||
|
int col_st = col * _stride - _pad;
|
||
|
float temp_out = 0.0f;
|
||
|
for (int c = 0 ; c < _C ; c++) {
|
||
|
for (int i = 0 ; i < _R ; i++) {
|
||
|
for (int j = 0 ; j < _S ; j++) {
|
||
|
int h = row_st + i * _dilation;
|
||
|
int w = col_st + j * _dilation;
|
||
|
if (h < 0 || w < 0 || h >= _H || w >= _W) continue;
|
||
|
float temp_input = _input[n*_C*_W*_H + c*_W*_H + h*_W + w];
|
||
|
float temp_filter = _filter[k*_C*_R*_S + c*_R*_S + i*_S + j];
|
||
|
temp_out += temp_input * temp_filter;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
_output[n*_K*OH*OW + k*OH*OW + row*OW + col] = temp_out;
|
||
|
}
|
||
|
|
||
|
void convolution(
|
||
|
float *_input, float *_output, float *_filter,
|
||
|
int _N, int _C, int _H, int _W,
|
||
|
int _K, int _R, int _S,
|
||
|
int _pad, int _dilation, int _stride) {
|
||
|
|
||
|
int offset = 0;
|
||
|
|
||
|
input = _input;
|
||
|
output = _output;
|
||
|
filter = _filter;
|
||
|
|
||
|
MPI_Request request;
|
||
|
MPI_Status status;
|
||
|
|
||
|
if (mpi_rank == 0 && mpi_world_size == 2 && Size[1] != 0) {
|
||
|
MPI_Isend(&input[Size[0]*C*H*W], Size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
|
||
|
MPI_Isend(filter, _K*_C*_R*_S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
|
||
|
if (Size[mpi_rank] < MAX_NUM_GPU) {
|
||
|
num_devices = Size[mpi_rank];
|
||
|
}
|
||
|
}
|
||
|
else if (mpi_rank == 1 && Size[mpi_rank] != 0) {
|
||
|
alloc_tensor(&input, Size[1], C, H, W);
|
||
|
alloc_tensor(&output, Size[1], K, OH, OW);
|
||
|
alloc_tensor(&filter, _K, _C, _R, _S);
|
||
|
//
|
||
|
MPI_Recv(input, Size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
|
||
|
MPI_Recv(filter, _K*_C*_R*_S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
|
||
|
|
||
|
if (Size[mpi_rank] < MAX_NUM_GPU) {
|
||
|
num_devices = Size[mpi_rank];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
offset = 0;
|
||
|
for (int i = 0 ; i < num_devices ; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(in_d[i], input + offset, NN[i]*C*H*W*sizeof(float), cudaMemcpyHostToDevice) );
|
||
|
CUDA_CALL( cudaMemcpy(filter_d[i], filter, K*C*R*S*sizeof(float),cudaMemcpyHostToDevice) );
|
||
|
offset += NN[i] * C * H * W;
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
dim3 gridDim((OH+TS-1)/TS, (NN[i]*K*OW + TS - 1)/TS, 1);
|
||
|
dim3 blockDim(TS, TS, 1);
|
||
|
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
Convolution_cuda<<<gridDim, blockDim>>>(in_d[i], out_d[i], filter_d[i], NN[i], _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride);
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
|
||
|
offset = 0;
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
CUDA_CALL( cudaMemcpy(output + offset, out_d[i],
|
||
|
NN[i]*K*OH*OW * sizeof(float),
|
||
|
cudaMemcpyDeviceToHost) );
|
||
|
offset += NN[i]*K*OH*OW;
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
}
|
||
|
|
||
|
if (mpi_rank == 0 && mpi_world_size == 2 && Size[1] != 0) {
|
||
|
MPI_Recv(&output[Size[0]*K*OH*OW], Size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status);
|
||
|
} else if(mpi_rank == 1 && Size[1] != 0){
|
||
|
MPI_Isend(output, Size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void convolution_init(
|
||
|
int _N, int _C, int _H, int _W,
|
||
|
int _K, int _R, int _S,
|
||
|
int _pad, int _dilation, int _stride) {
|
||
|
N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S;
|
||
|
pad = _pad;
|
||
|
dilation = _dilation;
|
||
|
stride = _stride;
|
||
|
|
||
|
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
|
||
|
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
|
||
|
|
||
|
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
|
||
|
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
|
||
|
|
||
|
if (mpi_world_size == 2) {
|
||
|
Size[1] = _N / 2;
|
||
|
}
|
||
|
Size[0] = N - Size[1];
|
||
|
|
||
|
/* MP size of MPI MAX GPU */
|
||
|
if (Size[mpi_rank] < MAX_NUM_GPU) {
|
||
|
num_devices = Size[mpi_rank];
|
||
|
for (int i = 0 ; i < Size[mpi_rank] ; i++) {
|
||
|
NN[i] = 1;
|
||
|
}
|
||
|
} else {
|
||
|
num_devices = MAX_NUM_GPU;
|
||
|
int remain = Size[mpi_rank] % MAX_NUM_GPU;
|
||
|
int quot = Size[mpi_rank] / MAX_NUM_GPU;
|
||
|
for (int i = 0 ; i < MAX_NUM_GPU ; i++) {
|
||
|
NN[i] = quot;
|
||
|
if (i < remain) {
|
||
|
NN[i]++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (int i = 0 ; i < num_devices ; i++) {
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
CUDA_CALL( cudaMalloc(&in_d[i], NN[i]*C*H*W*sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&out_d[i], NN[i]*K*OH*OW*sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&filter_d[i], K*C*R*S*sizeof(float)) );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void convolution_final(
|
||
|
int _N, int _C, int _H, int _W,
|
||
|
int _K, int _R, int _S,
|
||
|
int _pad, int _dilation, int _stride) {
|
||
|
}
|
||
|
|