chundoong-lab-ta/SamsungDS22/submissions/HW5/bumhee86.lee/mat_mul.cpp

277 lines
8.1 KiB
C++
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include "mat_mul.h"
#include <stdio.h>
#include <CL/cl.h>
#include "util.h"
#define MAT_COPY (0)
#define CHECK_ERROR(err) \
if (err != CL_SUCCESS) { \
printf("[%s:%d] OpenCL error %d\n", __FILE__, __LINE__, err); \
exit(EXIT_FAILURE); \
}
#define ALIGN_UP(_X, _Y) (((_X) + (_Y) - 1) & ~((_Y) - 1))
#define MAX_DEV (4)
static cl_int err;
static cl_platform_id platform;
static cl_device_id device[MAX_DEV];
static cl_context context;
static cl_command_queue queue[MAX_DEV];
static cl_program program[MAX_DEV];
static cl_kernel kernel[MAX_DEV];
static cl_mem a_d[MAX_DEV], b_d[MAX_DEV], c_d[MAX_DEV];
static float *A, *B, *C;
static int M, N, K;
static int NON_OPTIMAL;
static int nDevCnt;
#if (MAT_COPY)
static float *A_backup, *B_backup, *C_backup;
static int M_backup, N_backup, K_backup;
#endif // MAT_COPY
#define NUM_WORK_ITEM (32)
#define VECTOR_WIDTH (16)
#define USING_NON_VECTOR (1)
#if (MAT_COPY)
static void mat_copy(float* __restrict pfDst, float* __restrict pfSrc, int nXDsize, int nYDsize, int nXSsize, int nYSsize, int nAddPadding)
{
if (nAddPadding)
{
#pragma omp parallel for
for (int i = 0; i < nXDsize; i++)
{
for (int j = 0; j < nYDsize; j++)
{
if (i >= nXSsize || j >= nYSsize)
{
*(pfDst + i * nXDsize + j) = 0.0f;
}
else
{
*(pfDst + i * nXDsize + j) =*(pfSrc + i * nXSsize + j);
}
}
}
}
else
{
#pragma omp parallel for
for (int i = 0; i < nXDsize; i++)
{
for (int j = 0; j < nYDsize; j++)
{
*(pfDst + i * nXSsize + j) =*(pfSrc + i * nXDsize + j);
}
}
}
}
#endif // MAT_COPY
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
A = _A, B = _B, C = _C;
M = _M, N = _N, K = _K;
if (_M % (NUM_WORK_ITEM * nDevCnt) != 0
|| _N % NUM_WORK_ITEM != 0
|| _K % NUM_WORK_ITEM != 0)
{
NON_OPTIMAL = 1;
}
else
{
NON_OPTIMAL = 0;
}
// Setup kernel arguments
for (int i = 0; i < nDevCnt; i++)
{
const int nLocalM = (i == (nDevCnt - 1)) ? M - ((M / nDevCnt) * (nDevCnt - 1)) : (M / nDevCnt);
err = clSetKernelArg(kernel[i], 0, sizeof(cl_mem), &a_d[i]);
CHECK_ERROR(err);
err = clSetKernelArg(kernel[i], 1, sizeof(cl_mem), &b_d[i]);
CHECK_ERROR(err);
err = clSetKernelArg(kernel[i], 2, sizeof(cl_mem), &c_d[i]);
CHECK_ERROR(err);
err = clSetKernelArg(kernel[i], 3, sizeof(int), &nLocalM);
CHECK_ERROR(err);
err = clSetKernelArg(kernel[i], 4, sizeof(int), &N);
CHECK_ERROR(err);
err = clSetKernelArg(kernel[i], 5, sizeof(int), &K);
CHECK_ERROR(err);
err = clSetKernelArg(kernel[i], 6, sizeof(int), &NON_OPTIMAL);
CHECK_ERROR(err);
// Setup global work size and local work size
size_t gws[2] , lws[2];
#if (!USING_NON_VECTOR)
if (NON_OPTIMAL == 0)
{
gws[0] = (size_t)nLocalM;
gws[1] = (size_t)N / VECTOR_WIDTH;
lws[0] = NUM_WORK_ITEM;
lws[1] = NUM_WORK_ITEM / VECTOR_WIDTH;
}
else
#endif
{
gws[0] = (size_t)ALIGN_UP(nLocalM, VECTOR_WIDTH) / VECTOR_WIDTH;
gws[1] = (size_t)ALIGN_UP(N, NUM_WORK_ITEM);
lws[0] = NUM_WORK_ITEM / VECTOR_WIDTH;
lws[1] = NUM_WORK_ITEM;
}
for (int i = 0; i < 2; ++i) {
// By OpenCL spec, global work size should be MULTIPLE of local work size
// Formula below achieve it
// e.g., gws = 25, lws = 16, then (25 + 16 - 1) / 16 * 16 = 40 / 16 * 16 = 2 * 16 = 32
gws[i] = (gws[i] + lws[i] - 1) / lws[i] * lws[i];
}
// printf("gws : %d, %d lws : %d, %d\n",gws[0],gws[1],lws[0],lws[1]);
// Run kernel
err = clEnqueueNDRangeKernel(queue[i], kernel[i], 2, NULL, gws, lws, 0, NULL, NULL);
CHECK_ERROR(err);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < nDevCnt; i++)
{
err = clFinish(queue[i]);
CHECK_ERROR(err);
}
}
static void print_platform_info(cl_platform_id platform) {
size_t sz;
char *buf;
CHECK_ERROR(clGetPlatformInfo(platform, CL_PLATFORM_NAME, 0, NULL, &sz));
buf = (char*)malloc(sz);
CHECK_ERROR(clGetPlatformInfo(platform, CL_PLATFORM_NAME, sz, buf, NULL));
printf("Detected OpenCL platform: %s\n", buf);
free(buf);
}
static void print_device_info(cl_device_id device) {
size_t sz;
char *buf;
CHECK_ERROR(clGetDeviceInfo(device, CL_DEVICE_NAME, 0, NULL, &sz));
buf = (char*)malloc(sz);
CHECK_ERROR(clGetDeviceInfo(device, CL_DEVICE_NAME, sz, buf, NULL));
printf("Detected OpenCL device: %s\n", buf);
free(buf);
}
static cl_program create_and_build_program_with_source(cl_context context, cl_device_id device, const char *file_name) {
FILE *file = fopen(file_name, "rb");
if (file == NULL) {
printf("Failed to open %s\n", file_name);
exit(EXIT_FAILURE);
}
fseek(file, 0, SEEK_END);
size_t source_size = ftell(file);
rewind(file);
char *source_code = (char*)malloc(source_size + 1);
size_t ntotal = 0;
while (ntotal < source_size) {
int nread = fread(source_code, sizeof(char), source_size, file);
ntotal += nread;
}
source_code[source_size] = '\0';
fclose(file);
cl_program program = clCreateProgramWithSource(context, 1, (const char **)&source_code, &source_size, &err);
CHECK_ERROR(err);
free(source_code);
err = clBuildProgram(program, 1, &device, "", NULL, NULL);
if (err == CL_BUILD_PROGRAM_FAILURE) {
size_t log_size;
CHECK_ERROR(clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size));
char *log = (char*)malloc(log_size + 1);
CHECK_ERROR(clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, log_size, log, NULL));
log[log_size] = 0;
printf("Compile error:\n%s\n", log);
free(log);
}
CHECK_ERROR(err);
return program;
}
void mat_mul_init(float *A, float *B, float *C, int M, int N, int K) {
// Get OpenCL platform
err = clGetPlatformIDs(1, &platform, NULL);
CHECK_ERROR(err);
print_platform_info(platform);
// Get OpenCL device
err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 0, NULL, (cl_uint*)&nDevCnt);
err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, (cl_uint)nDevCnt, device, NULL);
CHECK_ERROR(err);
// for (int i = 0; i < nDevCnt; i++)
{
print_device_info(device[0]);
}
// Create OpenCL context
context = clCreateContext(NULL, (cl_uint)nDevCnt, device, NULL, NULL, &err);
CHECK_ERROR(err);
// Create OpenCL command queue
for (int i = 0; i < nDevCnt; i++)
{
int nLocalM = (i == (nDevCnt - 1)) ? M - ((M / nDevCnt) * (nDevCnt - 1)) : (M / nDevCnt);
queue[i] = clCreateCommandQueue(context, device[i], 0, &err);
CHECK_ERROR(err);
// Compile program from "kernel.cl"
program[i] = create_and_build_program_with_source(context, device[i], "kernel.cl");
// Extract kernel from compiled program
kernel[i] = clCreateKernel(program[i], "sgemm", &err);
CHECK_ERROR(err);
// Create GPU buffers
a_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, nLocalM * K * sizeof(float), NULL, &err);
CHECK_ERROR(err);
b_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, K * N * sizeof(float), NULL, &err);
CHECK_ERROR(err);
c_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, nLocalM * N * sizeof(float), NULL, &err);
CHECK_ERROR(err);
// Write to GPU; A (cpu) -> a_d (gpu), B (cpu) -> b_d (gpu)
err = clEnqueueWriteBuffer(queue[i], a_d[i], CL_TRUE, 0, nLocalM * K * sizeof(float), &A[i * (M / nDevCnt) * K], 0, NULL, NULL);
CHECK_ERROR(err);
err = clEnqueueWriteBuffer(queue[i], b_d[i], CL_TRUE, 0, K * N * sizeof(float), B, 0, NULL, NULL);
CHECK_ERROR(err);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < nDevCnt; i++)
{
err = clFinish(queue[i]);
CHECK_ERROR(err);
}
}
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
// Read from GPU; c_d (gpu) -> C (cpu)
for (int i = 0; i < nDevCnt; i++)
{
int nLocalM = (i == (nDevCnt - 1)) ? M - ((M / nDevCnt) * (nDevCnt - 1)) : (M / nDevCnt);
err = clEnqueueReadBuffer(queue[i], c_d[i], CL_TRUE, 0, nLocalM * N * sizeof(float), &C[i * (M / nDevCnt) * N], 0, NULL, NULL);
CHECK_ERROR(err);
}
for (int i = 0; i < nDevCnt; i++)
{
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
err = clFinish(queue[i]);
CHECK_ERROR(err);
}
}