chundoong-lab-ta/SamsungDS22/submissions/HW6/jj15.kim/mat_mul.cu

166 lines
4.8 KiB
Plaintext
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include "mat_mul.h"
#include <cstdio>
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define MAX_NUM_GPU 4
int num_devices = 0;
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
#if 1
#define TS 32
#define WPT 16
#define RTS (TS/WPT)
int r = threadIdx.x; //get_local_id(0);
int c = threadIdx.y; //get_local_id(1);
int g_r = (blockDim.x * WPT) * blockIdx.x + r; //TS * get_group_id(0) + r;
int g_c = blockDim.y * blockIdx.y + c; //TS * get_group_id(1) + c;
__shared__ float PA[TS][TS];
__shared__ float PB[TS][TS];
float tmp[WPT];
for (int w = 0; w < WPT; w++) {
tmp[w] = 0.0f;
}
int n_tiles = (K + TS - 1) / TS;
for (int t = 0; t < n_tiles; t++) {
for (int w = 0; w < WPT; w++) {
int t_r = TS * t + r;
int t_c = TS * t + c;
PA[r + w * RTS][c] = ((g_r + w * RTS) >= M || t_c >= K)? 0 : A[(g_r + w * RTS) * K + t_c];
PB[r + w * RTS][c] = ((t_r + w * RTS) >= K || g_c >= N)? 0 : B[(t_r + w * RTS) * N + g_c];
}
__syncthreads();
for (int k = 0; k < TS; k++) {
for (int w = 0; w < WPT; w++) {
tmp[w] += PA[r + w * RTS][k] * PB[k][c];
}
}
__syncthreads();
}
for (int w = 0; w < WPT; w++) {
if ((g_r + w * RTS) >= M || g_c >= N) continue;
C[(g_r + w * RTS) * N + g_c] = tmp[w];
}
#else
int i = blockDim.x * blockIdx.x + threadIdx.x;
int j = blockDim.y * blockIdx.y + threadIdx.y;
if (i >= M || j >= N)
return;
C[i * N + j] = 0;
for (int k = 0; k < K; ++k) {
C[i * N + j] += A[i * K + k] * B[k * N + j];
}
#endif
}
// Array of device (GPU) pointers
static float *a_d[MAX_NUM_GPU];
static float *b_d[MAX_NUM_GPU];
static float *c_d[MAX_NUM_GPU];
static int M, N, K;
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
#define TS 32
#define WPT 16
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
// Launch kernel on every GPU
for (int i = 0; i < num_devices; i++) {
dim3 blockDim(TS/WPT, TS, 1);
dim3 gridDim((Mend[i] - Mbegin[i] + TS - 1)/TS, (N + TS - 1)/TS , 1);
CUDA_CALL( cudaSetDevice(i) );
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mbegin[i], N, K);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
M = _M, N = _N, K = _K;
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Mbegin[i] = (M / num_devices) * i;
Mend[i] = (M / num_devices) * (i + 1);
}
Mend[num_devices - 1] = M;
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
}
// Upload A and B matrix to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K,
(Mend[i] - Mbegin[i]) * K * sizeof(float),
cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
// Do any post-matmul cleanup work here.
// Download C matrix from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i],
(Mend[i] - Mbegin[i]) * N * sizeof(float),
cudaMemcpyDeviceToHost) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}