chundoong-lab-ta/SamsungDS22/submissions/final/g.kwak/B/convolution.cu

298 lines
7.8 KiB
Plaintext
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include "convolution.h"
#include <mpi.h>
#include <cstdio>
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define TS 8
#define MAX_NUM_GPU 4
int num_devices = 0;
static float *a_d[MAX_NUM_GPU];
static float *b_d[MAX_NUM_GPU];
static float *c_d[MAX_NUM_GPU];
static int Msize[MAX_NUM_GPU], Mbegin[MAX_NUM_GPU];
static int mpi_size[2];
static float *input, *output, *filter;
static int N, C, H, W;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
static int CHW ;
static int KCRS ;
static int KOHOW ;
#include "util.h"
#define MASTER 0
#define FROM_MASTER 1
#define FROM_WORKER 2
__global__ void sgemm
( float *input, float *output, float *filter,
int N, int C, int H, int W,
int K, int R, int S,
int pad, int dilation, int stride) {
int OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
int OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
const int row_global = blockDim.x * blockIdx.x + threadIdx.x;
const int col_global = blockDim.y * blockIdx.y + threadIdx.y;
int KOW = K*OW;
int n = col_global / (KOW);
int k = (col_global - n*KOW) / OW;
int col = (col_global - n*KOW) - ( (col_global - n*KOW) / OW * OW );
int row = row_global;
int col_init = col * stride - pad;
int row_init = row * stride - pad;
if (row_global >= OH || col_global >= N*KOW) return;
float o = 0.f;
for (int c = 0; c < C; ++c) {
for (int r = 0; r < R; ++r) {
for (int s = 0; s < S; ++s) {
int h = row_init + r * dilation;
int w = col_init + s * dilation;
if (h < 0 || h >= H || w < 0 || w >= W) continue;
float in = input[n * C * H * W + c * H * W + h * W + w];
float filt = filter[k * C * R * S + c * R * S + r * S + s];
o += in * filt;
}
}
}
output[n * K *OH *OW + k *OH *OW + row *OW + col] = o;
//printf("\nout= %f, %f, %f \n", output[0], output[1], output[0]);
}
// Array of device (GPU) pointers
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride )
{
input = _input;
output = _output;
filter = _filter;
int dest;
int numworkers, mtype;
MPI_Status status;
MPI_Request request;
numworkers = mpi_world_size-1;
//////////////////////////////////
mtype = FROM_MASTER;
if(mpi_size[1] != 0) {
if(mpi_rank == 0) {
for (dest=1; dest<=numworkers; dest++)
{
MPI_Isend(&input[mpi_size[0]*CHW] ,mpi_size[1]*CHW, MPI_FLOAT, dest, mtype, MPI_COMM_WORLD, &request);
MPI_Isend(&filter[0] , KCRS, MPI_FLOAT, dest, mtype, MPI_COMM_WORLD, &request);
}
}
else {
alloc_tensor(&input , mpi_size[1], C, H, W);
alloc_tensor(&output, mpi_size[1], K, OH, OW);
alloc_tensor(&filter, K, C, R, S);
MPI_Recv(&input[0] , mpi_size[1]*CHW, MPI_FLOAT, MASTER , mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&filter[0] , KCRS, MPI_FLOAT, MASTER , mtype, MPI_COMM_WORLD, &status);
}
}
// Upload input and filter matrix to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(a_d[i], input + Mbegin[i] * CHW,
Msize[i] * CHW * sizeof(float), cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(b_d[i], filter,
KCRS * sizeof(float), cudaMemcpyHostToDevice) );
//printf("\n3= %f, %f, %f \n", input[0], input[1], filter[0]);
}
/*
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
*/
////////////// upper init///////////////////
// Launch kernel on every GPU
for (int i = 0; i < num_devices; i++) {
dim3 gridDim( (OH +TS-1)/TS, (Msize[i]*K*OW +TS-1)/TS,1);
dim3 blockDim( TS,TS,1);
CUDA_CALL( cudaSetDevice(i) );
sgemm<<<gridDim, blockDim>>>(a_d[i], c_d[i], b_d[i], Msize[i],
_C, _H, _W, _K, _R, _S, _pad, _dilation, _stride);
}
/*
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
*/
////////////// upper init///////////////////
// Download C matrix from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(output + Mbegin[i] * KOHOW, c_d[i],
Msize[i] * KOHOW * sizeof(float), cudaMemcpyDeviceToHost) );
}
// printf("\n4= %f, %f, %f \n", output[0], output[1], output[0]);
/*
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
*/
if(mpi_size[1] != 0) {
if(mpi_rank == 0) {
MPI_Recv (&output[mpi_size[0]*KOHOW], mpi_size[1]*KOHOW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status);
}
else {
MPI_Isend(&output[0], mpi_size[1]*KOHOW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
}
}
}
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride)
{
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
CHW = C*H*W;
KCRS = K*C*R*S;
KOHOW = K*OH*OW;
if (mpi_world_size == 2 && N > 4) mpi_size[1] = N/2;
else mpi_size[1] = 0;
mpi_size[0] = N - mpi_size[1];
if (mpi_size[mpi_rank] < MAX_NUM_GPU) {
num_devices = mpi_size[mpi_rank];
for (int i = 0 ; i < mpi_size[mpi_rank] ; i++)
{
Msize[i] = 1;
Mbegin[i] = i;
}
}
else {
int offset = 0;
int Ndiv = mpi_size[mpi_rank]/MAX_NUM_GPU;
int Ndiv_extra = mpi_size[mpi_rank]%MAX_NUM_GPU;
for (int i = 0 ; i < MAX_NUM_GPU ; i++) {
Msize[i] = Ndiv;
if (i < Ndiv_extra) Msize[i]++;
Mbegin[i] = offset;
offset += Msize[i];
}
}
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
//printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
//printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
//printf("No CUDA device found. Aborting\n");
exit(1);
}
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&a_d[i], Msize[i] * CHW * sizeof(float)) );
CUDA_CALL( cudaMalloc(&b_d[i], KCRS * sizeof(float)) );
CUDA_CALL( cudaMalloc(&c_d[i], Msize[i] *KOHOW* sizeof(float)) );
// printf("\n2= %i, %i, %i \n", Msize[i] * CHW ,KCRS, Msize[i]*KOHOW);
}
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride)
{
// Do any post-matmul cleanup work here.
}