chundoong-lab-ta/SamsungDS22/submissions/final/jinin.so/tmp-B/convolution.cu

272 lines
7.5 KiB
Plaintext
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include "convolution.h"
#include <mpi.h>
#include <stdio.h>
#include "util.h"
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define NODE 2
#define MAX_NUM_GPU 4
void convolution_cuda();
void convolution_cuda_init(int,int);
void convolution_cuda_final(int);
static float *input, *output, *filter;
static int N, C, H, W;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
int num_devices = 0;
__global__ void conv_kernel(float *input, float *filter, float *output, int N, int C, int H, int W,
int K, int R, int S, int OH, int OW, int pad, int dilation, int stride) {
int m = blockDim.x * blockIdx.x + threadIdx.x;
int j = blockDim.y * blockIdx.y + threadIdx.y;
int k = blockDim.z * blockIdx.z + threadIdx.z;
//int m = threadIdx.x;
//int j = threadIdx.y;
//int k = threadIdx.z;
//printf("kernel test %d %d %d\n", blockDim.x, blockIdx.x, threadIdx.x);
if (m >= K || j>= OH || k >= OW) return;
for(int n=0;n<N;n++){
//for (int k = 0; k < K; ++k) {
//for (int oh = 0; oh < OH; ++oh) {
//for (int ow = 0; ow < OW; ++ow) {
float o = 0.f;
for (int c = 0; c < C; ++c) {
for (int r = 0; r < R; ++r) {
for (int s = 0; s < S; ++s) {
int h = j * stride - pad + r * dilation;
int w = k * stride - pad + s * dilation;
if (h < 0 || h >= H || w < 0 || w >= W) continue;
float i = input[n * C * H * W + c * H * W + h * W + w];
float f = filter[m * C * R * S + c * R * S + r * S + s];
o += i * f;
}
}
}
output[n * K * OH * OW + m * OH * OW + j * OW + k] = o;
//printf("kernel test = %f ",o);
//}
//printf("\n");
//}
//}
}
}
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
input = _input;
output = _output;
filter = _filter;
MPI_Status status;
MPI_Request request1,request2;
int rows;
int half = N/mpi_world_size;
if(mpi_world_size == 2){
rows = N-half;
}else{
rows = N;
}
int offset = N/mpi_world_size;
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
if (mpi_rank == 0) {
if(mpi_world_size != 1){
MPI_Isend(&input[(offset)*C*H*W], (rows)*C*H*W, MPI_FLOAT, 1 , 1, MPI_COMM_WORLD,&request1);
MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 1, MPI_COMM_WORLD,&request2);
}
//printf("\n test %d %d\n",rows,offset);
convolution_cuda_init(rows,0);
convolution_cuda();
convolution_cuda_final(0);
if(mpi_world_size != 1){
MPI_Recv(&output[(offset)*K*OH*OW], (rows)*K*OH*OW, MPI_FLOAT, 1, 2, MPI_COMM_WORLD, &status);
}
}else if(mpi_rank > 0){
alloc_tensor(&input, rows, C,H,W);
alloc_tensor(&filter, K,C,R,S);
alloc_tensor(&output, rows, K,OH,OW);
//printf("\n test11 %d %d %f\n",i,offset,*(input + (Mbegin[i]+offset) * C * H * W));
MPI_Recv(input, (rows)*C*H*W, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &status);
MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &status);
//printf("\n test %d %d\n",rows,offset);
convolution_cuda_init(rows,0);
convolution_cuda();
convolution_cuda_final(0);
MPI_Send(output, (rows)*K*OH*OW, MPI_FLOAT, 0, 2, MPI_COMM_WORLD);
}
}
// Array of device (GPU) pointers
static float *input_d[MAX_NUM_GPU];
static float *filter_d[MAX_NUM_GPU];
static float *output_d[MAX_NUM_GPU];
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
void convolution_cuda() {
// Launch kernel on every GPU
for (int i = 0; i < num_devices; i++) {
dim3 blockDim(4, 4, 64);
dim3 gridDim((K+3)/4, (OH+3)/4, (OW+63)/64);
CUDA_CALL( cudaSetDevice(i) );
conv_kernel<<<gridDim, blockDim>>>(input_d[i], filter_d[i], output_d[i], Mend[i] - Mbegin[i], C, H ,W , K, R, S, OH, OW, pad, dilation, stride );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void convolution_cuda_init(int rows,int offset) {
//printf("\n test %d %d\n",rows,offset);
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Mbegin[i] = (rows / num_devices) * i;
Mend[i] = (rows / num_devices) * (i + 1);
//printf("\n test %d %d\n",Mbegin[i],Mend[i]);
}
Mend[num_devices - 1] = rows;
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&input_d[i], (Mend[i] - Mbegin[i]) * C * H * W * sizeof(float)) );
CUDA_CALL( cudaMalloc(&filter_d[i], K * C * R * S * sizeof(float)) );
CUDA_CALL( cudaMalloc(&output_d[i], (Mend[i] - Mbegin[i]) * K* OH * OW * sizeof(float)) );
}
// Upload A and B matrix to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(input_d[i], input + (Mbegin[i]+offset) * C * H * W,
(Mend[i] - Mbegin[i]) * C * H * W * sizeof(float),
cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(filter_d[i], filter, K * C * R * S * sizeof(float), cudaMemcpyHostToDevice) );
//printf("\n test %d %d %f\n",i,offset,*(input + (Mbegin[i]+offset) * C * H * W));
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void convolution_cuda_final(int offset) {
// Do any post-matmul cleanup work here.
// Download C matrix from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(output + (Mbegin[i]+offset) * K * OH * OW, output_d[i],
(Mend[i] - Mbegin[i]) * K * OH * OW * sizeof(float),
cudaMemcpyDeviceToHost) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
}