chundoong-lab-ta/SamsungDS22/HW6-ans/mat_mul.cu

143 lines
4.1 KiB
Plaintext
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include "mat_mul.h"
#include <cstdio>
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define MAX_NUM_GPU 4
int num_devices = 0;
#define TILE_SIZE 16
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
int bx = blockIdx.x, by = blockIdx.y;
int tx = threadIdx.x, ty = threadIdx.y;
__shared__ float As[TILE_SIZE][TILE_SIZE];
__shared__ float Bs[TILE_SIZE][TILE_SIZE];
int aBegin = K * TILE_SIZE * by;
int aEnd = aBegin + K - 1;
int aStep = TILE_SIZE;
int bBegin = TILE_SIZE * bx;
int bStep = TILE_SIZE * N;
float Csub = 0;
for (int i = aBegin, j = bBegin; i <= aEnd; i += aStep, j += bStep) {
As[ty][tx] = A[i + K * ty + tx];
Bs[tx][ty] = B[j + N * tx + ty];
__syncthreads();
for (int k = 0; k < TILE_SIZE; ++k) {
Csub += As[ty][k]*Bs[k][tx];
}
__syncthreads();
}
int cIdx = N * TILE_SIZE * by + TILE_SIZE * bx;
C[cIdx + N * ty + tx] = Csub;
}
// Array of device (GPU) pointers
static float *a_d[MAX_NUM_GPU];
static float *b_d[MAX_NUM_GPU];
static float *c_d[MAX_NUM_GPU];
static int M, N, K;
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
// Launch kernel on every GPU
// FIXME: Every GPU redundantly calculate all elements of C
for (int i = 0; i < num_devices; i++) {
dim3 blockDim(TILE_SIZE, TILE_SIZE, 1);
dim3 gridDim(N / TILE_SIZE, (Mend[i] - Mbegin[i]) / TILE_SIZE, 1);
cudaSetDevice(i);
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mbegin[i], N, K);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
M = _M, N = _N, K = _K;
cudaGetDeviceCount(&num_devices);
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
cudaGetDeviceProperties(&prop, i);
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Mbegin[i] = (M / num_devices) * i;
Mend[i] = (M / num_devices) * (i + 1);
}
Mend[num_devices - 1] = M;
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
cudaSetDevice(i);
cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float));
cudaMalloc(&b_d[i], K * N * sizeof(float));
cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float));
}
// Upload A and B matrix to every GPU
for (int i = 0; i < num_devices; i++) {
cudaMemcpy(a_d[i], A + Mbegin[i] * K,
(Mend[i] - Mbegin[i]) * K * sizeof(float),
cudaMemcpyHostToDevice);
cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
cudaDeviceSynchronize();
}
}
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
// Do any post-matmul cleanup work here.
// Download C matrix from GPU 0
// FIXME: Result from the other GPUs are ignored
for (int i = 0; i < num_devices; i++) {
cudaMemcpy(C + Mbegin[i] * N, c_d[i],
(Mend[i] - Mbegin[i]) * N * sizeof(float),
cudaMemcpyDeviceToHost);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
cudaDeviceSynchronize();
}
}