chundoong-lab-ta/SamsungDS22/submissions/HW4/hongpooh.kim/mat_mul.cpp

203 lines
6.4 KiB
C++
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include "mat_mul.h"
#include "util.h"
#include <cstdio>
#include <cstdlib>
#include <mpi.h>
#include <omp.h> // by hongpooh
static float *A, *B, *C;
static int M, N, K;
static int num_threads;
static int mpi_rank, mpi_world_size;
MPI_Status status;
MPI_Request request;
static int offset, rows;
#define min(x, y) (x < y ? x : y)
#define ITILESIZE (32)
#define JTILESIZE (1024)
#define KTILESIZE (1024)
//#define JTILESIZE (2048)
//#define KTILESIZE (2048)
#define MASTER 0
#define FROM_MASTER 1
#define FROM_WORKER 2
static void mat_mul_omp() {
// TODO: parallelize & optimize matrix multiplication
// Use num_threads per node
int is = 0;
int ie = rows;
/* 1) original code
#pragma omp parallel for
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
for (int k = 0; k < K; ++k) {
C[i * N + j] += A[i * K + k] * B[k * N + j];
}
}
}
*/
/* time over
#pragma omp parallel num_threads(num_threads)
//#pragma omp parallel for
#pragma omp for
for (int i = 0; i < rows; ++i) {
for (int j = 0; j < N; ++j) {
for (int k = 0; k < K; ++k) {
C[i * N + j] += A[i * K + k] * B[k * N + j];
}
}
}
*/
/* working code #1 - run_valid.sh OK
#pragma omp parallel num_threads(num_threads)
#pragma omp for
//#pragma omp parallel for
for (int i = 0; i < rows; ++i) {
for (int k = 0; k < K; ++k) {
float ar = A[i * K + k];
for (int j = 0; j < N; ++j) {
C[i * N + j] += ar * B[k * N + j];
}
}
}
*/
/* OpenMP - ref. coce from HW3
//int tid = (long)data;
//int is = M / num_threads * tid + min(tid, M % num_threads);
//int ie = M / num_threads * (tid + 1) + min(tid + 1, M % num_threads);
//for (int ii = is; ii < ie; ii += ITILESIZE) {
#pragma omp parallel for // (original 8192, 8192, 8192) omp: 490 GFLOPS
//#pragma omp parallel for shared(A, B, C)
for (int ii = 0; ii < M; ii += ITILESIZE) {
for (int jj = 0; jj < N; jj += JTILESIZE) {
for (int kk = 0; kk < K; kk += KTILESIZE) {
for (int k = kk; k < min(K, kk + KTILESIZE); k++) {
//for (int i = ii; i < min(ie, ii + ITILESIZE); i++) {
for (int i = ii; i < min(M, ii + ITILESIZE); i++) {
float ar = A[i * K + k];
for (int j = jj; j < min(N, jj + JTILESIZE); j++) {
C[i * N + j] += ar * B[k * N + j];
//C[i * N + j] += A[i * K + k] * B[k * N + j]; // w/o 'float ar': 450~500 GFLOPS
}
}
}
}
}
}
*/
//#pragma omp parallel for // (original 8192, 8192, 8192) omp: 490 GFLOPS
//#pragma omp parallel for shared(A, B, C)
#pragma omp parallel num_threads(num_threads)
#pragma omp for
for (int ii = is; ii < ie; ii += ITILESIZE) {
//for (int ii = 0; ii < M; ii += ITILESIZE) {
for (int jj = 0; jj < N; jj += JTILESIZE) {
for (int kk = 0; kk < K; kk += KTILESIZE) {
for (int k = kk; k < min(K, kk + KTILESIZE); k++) {
//for (int i = ii; i < min(M, ii + ITILESIZE); i++) {
for (int i = ii; i < min(ie, ii + ITILESIZE); i++) {
float ar = A[i * K + k];
for (int j = jj; j < min(N, jj + JTILESIZE); j++) {
C[i * N + j] += ar * B[k * N + j];
//C[i * N + j] += A[i * K + k] * B[k * N + j];
}
}
}
}
}
}
}
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K,
int _num_threads, int _mpi_rank, int _mpi_world_size) {
A = _A, B = _B, C = _C;
M = _M, N = _N, K = _K;
num_threads = _num_threads, mpi_rank = _mpi_rank,
mpi_world_size = _mpi_world_size;
// TODO: parallelize & optimize matrix multiplication on multi-node
// You must allocate & initialize A, B, C for non-root processes
//printf("\n[hong] mpi_rank: %d & mpi_world_size: %d\n", mpi_rank, mpi_world_size);
// FIXME: for now, only root process runs the matrix multiplication.
if (mpi_rank == 0) {
//printf("\nmpi_rank=0\n");
int row_size = M / mpi_world_size;
int st, ed;
for (int node = 1; node < mpi_world_size; node++) {
offset = node * row_size;
st = offset;
ed = ((node == mpi_world_size -1) ? M : (node + 1) * row_size);
rows = ed -st;
/* data send: NON-blocking */
MPI_Isend(&offset, 1, MPI_INT, node, FROM_MASTER, MPI_COMM_WORLD, &request);
MPI_Isend(&rows, 1, MPI_INT, node, FROM_MASTER, MPI_COMM_WORLD, &request);
MPI_Isend(&A[offset * K], rows * K, MPI_FLOAT, node, FROM_MASTER, MPI_COMM_WORLD, &request);
MPI_Isend(B, K * N, MPI_FLOAT, node, FROM_MASTER, MPI_COMM_WORLD, &request);
}
rows = row_size;
mat_mul_omp();
/* receive data from each node */
for (int node = 1; node < mpi_world_size; node++) {
MPI_Recv(&offset, 1, MPI_INT, node, FROM_WORKER, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, node, FROM_WORKER, MPI_COMM_WORLD, &status);
MPI_Recv(&C[offset * N], rows * N, MPI_FLOAT, node, FROM_WORKER, MPI_COMM_WORLD, &status);
}
} else {
// printf("\nmpi_rank != 0\n");
alloc_mat(&A, M, K);
alloc_mat(&B, K, N);
alloc_mat(&C, M, N);
zero_mat(C, M, N);
/* receive data from master */
MPI_Recv(&offset, 1, MPI_INT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status);
MPI_Recv(A, rows * K, MPI_FLOAT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status);
MPI_Recv(B, K * N, MPI_FLOAT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status);
mat_mul_omp();
/* result send to master: NON-blocking */
MPI_Isend(&offset, 1, MPI_INT, MASTER, FROM_WORKER, MPI_COMM_WORLD, &request);
MPI_Isend(&rows, 1, MPI_INT, MASTER, FROM_WORKER, MPI_COMM_WORLD, &request);
MPI_Isend(C, rows * N, MPI_FLOAT, MASTER, FROM_WORKER, MPI_COMM_WORLD, &request);
}
/* test only
if (mpi_rank == 0) {
printf("\nmpi_rank=0\n");
mat_mul_omp();
} else
printf("\nmpi_rank!=0! - 1 or 2\n");
mat_mul_omp(); // test only
}
*/
}