chundoong-lab-ta/SamsungDS22/submissions/HW4/sunmin7.kwon/mat_mul.cpp

147 lines
3.7 KiB
C++
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include "mat_mul.h"
#include <cstdio>
#include <cstdlib>
#include <mpi.h>
#include <omp.h>
#include "util.h"
#define MASTER_0 0
#define FROM_MASTER_1 1
#define FROM_WORKER_2 2
#define ITILESIZE (32)
#define JTILESIZE (1024)
#define KTILESIZE (1024)
static float *A, *B, *C;
static int M, N, K;
static int num_threads;
static int mpi_rank, mpi_world_size;
static int min(int x, int y) {
return x < y ? x : y;
}
static void mat_mul_omp(float *A, float *C, int rows) {
// TODO: parallelize & optimize matrix multiplication
// Use num_threads per node
int tid, start_T_M, end_T_M, p_size ;
//float A_temp ;
//#pragma omp parallel for
//#pragma omp parallel for num_threads(num_threads) private(tid, start_T_M, end_T_M, p_size, A_temp) shared(A, B, C, M, N, K)
#pragma omp parallel num_threads(num_threads) private(tid, start_T_M, end_T_M, p_size) shared(A, B, C, M, N, K)
{
tid = omp_get_thread_num() ;
//if( (M%num_threads) != 0 ) {
//p_size = (M/num_threads) ;
if( (rows%num_threads) != 0 ) {
p_size = (rows/num_threads) ;
if(tid!=(num_threads-1)) {
start_T_M = tid * p_size;
end_T_M = start_T_M + p_size ;
}
else {
start_T_M = tid * p_size;
end_T_M = rows ;
}
}
else {
p_size = (rows/num_threads) ;
start_T_M = tid * p_size;
end_T_M = start_T_M + p_size ;
}
for (int ii = start_T_M; ii < end_T_M; ii += ITILESIZE) {
for (int jj = 0; jj < N; jj += JTILESIZE) {
for (int kk = 0; kk < K; kk += KTILESIZE) {
for (int k = kk; k < min(K, kk + KTILESIZE); k++) {
for (int i = ii; i < min(end_T_M, ii + ITILESIZE); i++) {
float ar = A[i * K + k];
for (int j = jj; j < min(N, jj + JTILESIZE); j+=1) {
C[i * N + j] += ar * B[k * N + j];
}
}
}
}
}
}
}//pragma
}
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K,
int _num_threads, int _mpi_rank, int _mpi_world_size) {
A = _A, B = _B, C = _C;
M = _M, N = _N, K = _K;
num_threads = _num_threads, mpi_rank = _mpi_rank,
mpi_world_size = _mpi_world_size;
MPI_Status status;
// TODO: parallelize & optimize matrix multiplication on multi-node
// You must allocate & initialize A, B, C for non-root processes
MPI_Barrier(MPI_COMM_WORLD);
int row_size, rows ;
int start_M, end_M ;
if(mpi_rank==0) {
for(int node = 1; node < mpi_world_size; node++) {
row_size = (M/mpi_world_size) ;
rows = row_size ;
start_M = (node-1) * row_size;
MPI_Send(&A[start_M*K], rows*K, MPI_INT, node, FROM_MASTER_1, MPI_COMM_WORLD) ;
MPI_Send(B, K*N, MPI_INT, node, FROM_MASTER_1, MPI_COMM_WORLD) ;
}
row_size = (M/mpi_world_size) ;
start_M = (mpi_world_size-1) * row_size;
end_M = M ;
rows = end_M - start_M ;
mat_mul_omp(&A[start_M*K], &C[start_M*N], rows);
for(int node = 1; node < mpi_world_size; node++) {
row_size = (M/mpi_world_size) ;
rows = row_size ;
start_M = (node-1) * row_size;
MPI_Recv(&C[start_M*N], rows*N, MPI_INT, node, FROM_WORKER_2, MPI_COMM_WORLD, &status) ;
}
}
else {
alloc_mat(&A, M, K) ;
alloc_mat(&B, K, N) ;
alloc_mat(&C, M, N) ;
//zero_mat(C, M, N) ;
row_size = (M/mpi_world_size) ;
rows = row_size ;
MPI_Recv(A, rows*K, MPI_INT, MASTER_0, FROM_MASTER_1, MPI_COMM_WORLD, &status) ;
MPI_Recv(B, K*N, MPI_INT, MASTER_0, FROM_MASTER_1, MPI_COMM_WORLD, &status) ;
mat_mul_omp (A, C, rows) ;
MPI_Send(C, rows*N, MPI_INT, MASTER_0, FROM_WORKER_2, MPI_COMM_WORLD) ;
}
MPI_Barrier(MPI_COMM_WORLD);
// // FIXME: for now, only root process runs the matrix multiplication.
// if (mpi_rank == 0)
// mat_mul_omp();
}