169 lines
5.5 KiB
Plaintext
169 lines
5.5 KiB
Plaintext
|
#include "mat_mul.h"
|
||
|
|
||
|
#include <cstdio>
|
||
|
#include <cuda_runtime.h>
|
||
|
|
||
|
#define CUDA_CALL(f) \
|
||
|
{ \
|
||
|
cudaError_t err = (f); \
|
||
|
if (err != cudaSuccess) { \
|
||
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
|
||
|
err, cudaGetErrorString(err)); \
|
||
|
exit(1); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define MAX_NUM_GPU 4
|
||
|
#define TileSize 32
|
||
|
#define SubWorkSize 16
|
||
|
#define Offset (TileSize/SubWorkSize)
|
||
|
|
||
|
int num_devices = 0;
|
||
|
|
||
|
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
|
||
|
//const int g_row = blockDim.x * SubWorkSize * blockIdx.x + threadIdx.x;
|
||
|
const int g_row = TileSize * blockIdx.x + threadIdx.x;
|
||
|
//const int g_col = blockDim.y * blockIdx.y + threadIdx.y;
|
||
|
const int g_col = TileSize * blockIdx.y + threadIdx.y;
|
||
|
|
||
|
const int l_row = threadIdx.x;
|
||
|
const int l_col = threadIdx.y;
|
||
|
|
||
|
__shared__ float Asub[TileSize][TileSize];
|
||
|
__shared__ float Bsub[TileSize][TileSize];
|
||
|
|
||
|
float acc[SubWorkSize];
|
||
|
for (int w = 0; w < SubWorkSize; w++) {
|
||
|
acc[w] = 0.0f;
|
||
|
}
|
||
|
|
||
|
const int num_tiles = (K + TileSize - 1) / TileSize;
|
||
|
for (int t = 0; t < num_tiles; t++) {
|
||
|
for (int w = 0; w < SubWorkSize; w++) {
|
||
|
const int t_row = TileSize * t + l_row;
|
||
|
const int t_col = TileSize * t + l_col;
|
||
|
|
||
|
int A_row_bound = g_row + w*Offset;
|
||
|
int B_row_bound = t_row + w*Offset;
|
||
|
|
||
|
if ((A_row_bound < M) && (t_col < K))
|
||
|
Asub[l_row + w*Offset][l_col] = A[(g_row + w*Offset)*K + t_col]; else Asub[l_row + w*Offset][l_col] = 0.0f;
|
||
|
|
||
|
if ((B_row_bound < K) && (g_col < N))
|
||
|
Bsub[l_row + w*Offset][l_col] = B[(t_row + w*Offset)*N + g_col]; else Bsub[l_row + w*Offset][l_col] = 0.0f;
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
for (int k=0; k < TileSize; k++) {
|
||
|
for (int w=0; w < SubWorkSize; w++) {
|
||
|
acc[w] += Asub[l_row + w*Offset][k] * Bsub[k][l_col];
|
||
|
}
|
||
|
}
|
||
|
__syncthreads();
|
||
|
// barrier(CLK_LOCAL_MEM_FENCE);
|
||
|
}
|
||
|
|
||
|
for (int w=0; w < SubWorkSize; w++) {
|
||
|
int C_row_bound = g_row + w*Offset;
|
||
|
|
||
|
if ((C_row_bound < M) && (g_col < N))
|
||
|
C[(g_row + w*Offset)*N + g_col] = acc[w];
|
||
|
else return;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
// Array of device (GPU) pointers
|
||
|
static float *a_d[MAX_NUM_GPU];
|
||
|
static float *b_d[MAX_NUM_GPU];
|
||
|
static float *c_d[MAX_NUM_GPU];
|
||
|
static int M, N, K;
|
||
|
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
|
||
|
|
||
|
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
|
||
|
|
||
|
// Launch kernel on every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
dim3 blockDim(TileSize/SubWorkSize, TileSize, 1);
|
||
|
int nBlock_row = (Mend[i] - Mbegin[i] + TileSize - 1) / TileSize;
|
||
|
int nBlock_col = (N + TileSize -1) / TileSize;
|
||
|
// printf("nBlock_row[%d]: %d, Mbegin[%d]: %d, Mend[%d]: %d\n", i, nBlock_row, i, Mbegin[i], i, Mend[i]);
|
||
|
// printf("BlockDim.x: %d, BlockDim.y: %d \n", blockDim.x, blockDim.y);
|
||
|
//dim3 gridDim(Mend[i] - Mbegin[i], N, 1);
|
||
|
dim3 gridDim(nBlock_row, nBlock_col, 1);
|
||
|
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], M, N, K);
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
|
||
|
M = _M, N = _N, K = _K;
|
||
|
|
||
|
CUDA_CALL( cudaGetDeviceCount(&num_devices) ); // for multiple GPUs
|
||
|
// num_devices = 1; // for performance check in a GPU
|
||
|
|
||
|
printf("Using %d devices\n", num_devices);
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
cudaDeviceProp prop;
|
||
|
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
|
||
|
|
||
|
// Try printing more detailed information here
|
||
|
printf("[GPU %d] %s\n", i, prop.name);
|
||
|
}
|
||
|
|
||
|
if (num_devices <= 0) {
|
||
|
printf("No CUDA device found. Aborting\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
// Setup problem size for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
Mbegin[i] = (M / num_devices) * i;
|
||
|
Mend[i] = (M / num_devices) * (i + 1);
|
||
|
}
|
||
|
Mend[num_devices - 1] = M;
|
||
|
|
||
|
// Allocate device memory for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
|
||
|
}
|
||
|
|
||
|
// Upload A and B matrix to every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K,
|
||
|
(Mend[i] - Mbegin[i]) * K * sizeof(float),
|
||
|
cudaMemcpyHostToDevice) );
|
||
|
CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
|
||
|
// Do any post-matmul cleanup work here.
|
||
|
|
||
|
// Download C matrix from GPUs
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i],
|
||
|
(Mend[i] - Mbegin[i]) * N * sizeof(float),
|
||
|
cudaMemcpyDeviceToHost) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|