173 lines
5.3 KiB
Plaintext
173 lines
5.3 KiB
Plaintext
|
#include "mat_mul.h"
|
||
|
|
||
|
#include <cstdio>
|
||
|
#include <cuda_runtime.h>
|
||
|
|
||
|
#define CUDA_CALL(f) \
|
||
|
{ \
|
||
|
cudaError_t err = (f); \
|
||
|
if (err != cudaSuccess) { \
|
||
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
|
||
|
err, cudaGetErrorString(err)); \
|
||
|
exit(1); \
|
||
|
} \
|
||
|
}
|
||
|
#define TS 32
|
||
|
#define WPT 8
|
||
|
#define RTS (TS/WPT)
|
||
|
|
||
|
#define MAX_NUM_GPU 4
|
||
|
int num_devices = 0;
|
||
|
|
||
|
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
|
||
|
/*
|
||
|
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||
|
int j = blockDim.y * blockIdx.y + threadIdx.y;
|
||
|
if (i >= M || j >= N)
|
||
|
return;
|
||
|
|
||
|
C[i * N + j] = 0;
|
||
|
for (int k = 0; k < K; ++k) {
|
||
|
C[i * N + j] += A[i * K + k] * B[k * N + j];
|
||
|
}
|
||
|
*/
|
||
|
const int row = threadIdx.x;//get_local_id(0); // row index of C
|
||
|
const int col = threadIdx.y;//get_local_id(1); // row index of C
|
||
|
const int global_row = (blockDim.x*WPT)*blockIdx.x+threadIdx.x;//TS*get_group_id(0)+row;
|
||
|
const int global_col = blockDim.y*blockIdx.y+threadIdx.y;//TS*get_group_id(1)+col;
|
||
|
//printf("row, col grow, gcol %d, %d, %d, %d \n", row,col, global_row, global_col);
|
||
|
__shared__ float Asub[TS][TS];
|
||
|
__shared__ float Bsub[TS][TS];
|
||
|
|
||
|
float intermediate_val[WPT];
|
||
|
for(int w=0;w<WPT;w++) {
|
||
|
intermediate_val[w] = 0.0f;
|
||
|
}
|
||
|
|
||
|
//const int num_tiles = (K%TS)>0 ? K/TS+1 : K/TS;
|
||
|
const int num_tiles = (K+TS-1)/TS;
|
||
|
|
||
|
//printf("K, K %% TS, numtile %d %d %d\n", K,K%TS,num_tiles);
|
||
|
for(int t=0;t<num_tiles;t++){
|
||
|
for(int w=0;w<WPT;w++){
|
||
|
const int t_row = TS*t+row;
|
||
|
const int t_col = TS*t+col;
|
||
|
|
||
|
if(global_row+w*RTS>=M || t_col >= K) {Asub[row+w*RTS][col]=0.0f;}
|
||
|
else
|
||
|
Asub[row+w*RTS][col]=A[(global_row+w*RTS)*K+t_col];
|
||
|
|
||
|
if(t_row+w*RTS>=K||global_col>=N) {Bsub[row+w*RTS][col]=0.0f;}
|
||
|
else
|
||
|
Bsub[row+w*RTS][col]=B[(t_row+w*RTS)*N+global_col];
|
||
|
}
|
||
|
//barrier(CLK_LOCAL_MEM_FENCE);
|
||
|
__syncthreads();
|
||
|
|
||
|
for (int k = 0; k < TS; k++) {
|
||
|
for(int w=0;w<WPT;w++) {
|
||
|
intermediate_val[w] += Asub[row+w*RTS][k]*Bsub[k][col];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//barrier(CLK_LOCAL_MEM_FENCE);
|
||
|
__syncthreads();
|
||
|
}
|
||
|
|
||
|
for(int w=0;w<WPT;w++) {
|
||
|
if(global_row+w*RTS>=M || global_col >=N) continue;
|
||
|
else C[(global_row+w*RTS)*N+global_col]=intermediate_val[w];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Array of device (GPU) pointers
|
||
|
static float *a_d[MAX_NUM_GPU];
|
||
|
static float *b_d[MAX_NUM_GPU];
|
||
|
static float *c_d[MAX_NUM_GPU];
|
||
|
static int M, N, K;
|
||
|
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
|
||
|
|
||
|
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
|
||
|
|
||
|
// Launch kernel on every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
// printf("Here is num dev\n");
|
||
|
//dim3 blockDim(1, 1, 1);
|
||
|
dim3 blockDim(TS/WPT,TS,1);
|
||
|
dim3 gridDim( ((Mend[i]-Mbegin[i]+TS-1)/TS), (N+TS-1)/TS, 1);
|
||
|
//dim3 gridDim(Mend[i] - Mbegin[i], N, 1);
|
||
|
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], M, N, K);
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
|
||
|
M = _M, N = _N, K = _K;
|
||
|
|
||
|
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
|
||
|
|
||
|
printf("Using %d devices\n", num_devices);
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
cudaDeviceProp prop;
|
||
|
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
|
||
|
|
||
|
// Try printing more detailed information here
|
||
|
printf("[GPU %d] %s\n", i, prop.name);
|
||
|
}
|
||
|
|
||
|
if (num_devices <= 0) {
|
||
|
printf("No CUDA device found. Aborting\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
// Setup problem size for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
Mbegin[i] = (M / num_devices) * i;
|
||
|
Mend[i] = (M / num_devices) * (i + 1);
|
||
|
}
|
||
|
Mend[num_devices - 1] = M;
|
||
|
|
||
|
// Allocate device memory for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
|
||
|
}
|
||
|
|
||
|
// Upload A and B matrix to every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K,
|
||
|
(Mend[i] - Mbegin[i]) * K * sizeof(float),
|
||
|
cudaMemcpyHostToDevice) );
|
||
|
CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
|
||
|
// Do any post-matmul cleanup work here.
|
||
|
|
||
|
// Download C matrix from GPUs
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i],
|
||
|
(Mend[i] - Mbegin[i]) * N * sizeof(float),
|
||
|
cudaMemcpyDeviceToHost) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|