232 lines
6.1 KiB
Plaintext
232 lines
6.1 KiB
Plaintext
|
#include "mat_mul.h"
|
||
|
|
||
|
#include <cstdio>
|
||
|
#include <cuda_runtime.h>
|
||
|
|
||
|
#define CUDA_CALL(f) \
|
||
|
{ \
|
||
|
cudaError_t err = (f); \
|
||
|
if (err != cudaSuccess) { \
|
||
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
|
||
|
err, cudaGetErrorString(err)); \
|
||
|
exit(1); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define MAX_NUM_GPU 4
|
||
|
int num_devices = 0;
|
||
|
|
||
|
//// 4800
|
||
|
//#define TS 16
|
||
|
//// 6900
|
||
|
//#define TS 18
|
||
|
// 7400
|
||
|
#define TS 20
|
||
|
//// 6400
|
||
|
//#define TS 25
|
||
|
|
||
|
__global__ void sgemm_no_wpt(float *A_d, float *B_d, float *C_d, int M_d, int N_d, int K_d) {
|
||
|
|
||
|
int global_row = blockDim.x * blockIdx.x + threadIdx.x;
|
||
|
int global_col = blockDim.y * blockIdx.y + threadIdx.y;
|
||
|
int global_row_K_d = global_row * K_d;
|
||
|
|
||
|
int numTiles = (K_d+TS-1)/TS;
|
||
|
|
||
|
__shared__ float Asub[TS][TS];
|
||
|
__shared__ float Bsub[TS][TS];
|
||
|
|
||
|
int t;
|
||
|
int k;
|
||
|
|
||
|
float acc = 0;
|
||
|
|
||
|
for(t = 0; t < TS*(numTiles-1); t += TS){
|
||
|
int t_row = t + threadIdx.x;
|
||
|
int t_col = t + threadIdx.y;
|
||
|
|
||
|
Asub[threadIdx.x][threadIdx.y] = A_d[global_row_K_d + t_col];
|
||
|
Bsub[threadIdx.x][threadIdx.y] = B_d[(t_row)*N_d + global_col];
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
for(k = 0; k < TS; k++){
|
||
|
acc += Asub[threadIdx.x][k] * Bsub[k][threadIdx.y];
|
||
|
}
|
||
|
|
||
|
__syncthreads();
|
||
|
}
|
||
|
|
||
|
int t_row = TS * (numTiles-1) + threadIdx.x;
|
||
|
int t_col = TS * (numTiles-1) + threadIdx.y;
|
||
|
|
||
|
if(((global_row) >= M_d) || (t_col >= K_d)){
|
||
|
Asub[threadIdx.x][threadIdx.y] = 0;
|
||
|
}
|
||
|
else{
|
||
|
Asub[threadIdx.x][threadIdx.y] = A_d[(global_row)*K_d + t_col];
|
||
|
}
|
||
|
|
||
|
if(((t_row) >= K_d) || (global_col >= N_d)){
|
||
|
Bsub[threadIdx.x][threadIdx.y] = 0;
|
||
|
}
|
||
|
else{
|
||
|
Bsub[threadIdx.x][threadIdx.y] = B_d[(t_row)*N_d + global_col];
|
||
|
}
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
for(k = 0; k < TS; k++){
|
||
|
acc += Asub[threadIdx.x][k] * Bsub[k][threadIdx.y];
|
||
|
}
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
if(((global_row) >= M_d) || (global_col >= N_d)) return;
|
||
|
C_d[(global_row)*N_d + global_col] = acc;
|
||
|
}
|
||
|
|
||
|
// Array of device (GPU) pointers
|
||
|
static float * a_d[MAX_NUM_GPU];
|
||
|
static float * b_d[MAX_NUM_GPU];
|
||
|
static float * c_d[MAX_NUM_GPU];
|
||
|
static int M, N, K;
|
||
|
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
|
||
|
|
||
|
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
|
||
|
// Launch kernel on every GPU
|
||
|
|
||
|
dim3 blockDim(TS, TS, 1);
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
|
||
|
dim3 gridDim(((Mend[i] - Mbegin[i])+TS-1)/(TS), (N+TS-1)/TS, 1);
|
||
|
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
sgemm_no_wpt<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mbegin[i], N, K);
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
|
||
|
M = _M, N = _N, K = _K;
|
||
|
|
||
|
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
|
||
|
|
||
|
printf("Using %d devices\n", num_devices);
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
cudaDeviceProp prop;
|
||
|
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
|
||
|
|
||
|
// Try printing more detailed information here
|
||
|
printf("[GPU %d] %s\n", i, prop.name);
|
||
|
}
|
||
|
|
||
|
if (num_devices <= 0) {
|
||
|
printf("No CUDA device found. Aborting\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
// Setup problem size for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
Mbegin[i] = (M / num_devices) * i;
|
||
|
Mend[i] = (M / num_devices) * (i + 1);
|
||
|
}
|
||
|
Mend[num_devices - 1] = M;
|
||
|
|
||
|
// Allocate device memory for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
|
||
|
}
|
||
|
|
||
|
// Upload A and B matrix to every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K,
|
||
|
(Mend[i] - Mbegin[i]) * K * sizeof(float),
|
||
|
cudaMemcpyHostToDevice) );
|
||
|
CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
|
||
|
// Do any post-matmul cleanup work here.
|
||
|
|
||
|
// Download C matrix from GPUs
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i],
|
||
|
(Mend[i] - Mbegin[i]) * N * sizeof(float),
|
||
|
cudaMemcpyDeviceToHost) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//#define WPT 1
|
||
|
//#define RTS (TS/WPT)
|
||
|
|
||
|
//__global__ void sgemm(float *A_d, float *B_d, float *C_d, int M_d, int N_d, int K_d) {
|
||
|
//
|
||
|
// int global_row = blockDim.x * blockIdx.x + threadIdx.x;
|
||
|
// int global_col = blockDim.y * blockIdx.y + threadIdx.y;
|
||
|
//
|
||
|
// int numTiles = (K_d+TS-1)/TS;
|
||
|
//
|
||
|
// __shared__ float Asub[TS][TS];
|
||
|
// __shared__ float Bsub[TS][TS];
|
||
|
//
|
||
|
// int t;
|
||
|
// int w;
|
||
|
// int k;
|
||
|
//
|
||
|
// float acc[WPT];
|
||
|
// for(w = 0; w < WPT; w++){
|
||
|
// acc[w] = 0;
|
||
|
// }
|
||
|
//
|
||
|
// for(t = 0; t < numTiles; t++){
|
||
|
// int t_row = TS * t + threadIdx.x;
|
||
|
// int t_col = TS * t + threadIdx.y;
|
||
|
// for(w = 0; w < WPT; w++){
|
||
|
// if(((global_row + w*RTS) >= M_d) || (t_col >= K_d)){
|
||
|
// Asub[threadIdx.x + w*RTS][threadIdx.y] = 0;
|
||
|
// }
|
||
|
// else{
|
||
|
// Asub[threadIdx.x + w*RTS][threadIdx.y] = A_d[(global_row + w*RTS)*K_d + t_col];
|
||
|
// }
|
||
|
//
|
||
|
// if(((t_row + w*RTS) >= K_d) || (global_col >= N_d)){
|
||
|
// Bsub[threadIdx.x + w*RTS][threadIdx.y] = 0;
|
||
|
// }
|
||
|
// else{
|
||
|
// Bsub[threadIdx.x + w*RTS][threadIdx.y] = B_d[(t_row + w*RTS)*N_d + global_col];
|
||
|
// }
|
||
|
// }
|
||
|
// __syncthreads();
|
||
|
// for(k = 0; k < TS; k++){
|
||
|
// for(w = 0; w < WPT; w++){
|
||
|
// acc[w] += Asub[threadIdx.x + w*RTS][k] * Bsub[k][threadIdx.y];
|
||
|
// }
|
||
|
// }
|
||
|
// __syncthreads();
|
||
|
// }
|
||
|
//
|
||
|
// for(w = 0; w < WPT; w++){
|
||
|
// if(((global_row + w*RTS) >= M_d) || (global_col >= N_d)) break;
|
||
|
// C_d[(global_row + w*RTS)*N_d + global_col] = acc[w];
|
||
|
// }
|
||
|
//}
|