chundoong-lab-ta/SamsungDS22/submissions/HW6/won-seok.lee/mat_mul.cu

197 lines
5.7 KiB
Plaintext
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include "mat_mul.h"
#include <cstdio>
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define MAX_NUM_GPU 4
int num_devices = 4;
#define TS 32
#define WPT 16
#define RTSF (TS/WPT)
//int MM;
//int KK;
//int NN;
// A: M x K
// B: K x N
// C: M x N
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
//int i = blockDim.x * blockIdx.x + threadIdx.x;
//int j = blockDim.y * blockIdx.y + threadIdx.y;
int row = threadIdx.x;
int col = threadIdx.y;
int globalRow = (blockDim.x * WPT) * blockIdx.x + threadIdx.x;
int globalCol = blockDim.y * blockIdx.y + threadIdx.y;
//f (i >= M || j >= N)
// return;
__shared__ float Asub[TS][TS];
__shared__ float Bsub[TS][TS];
float acc[WPT];
for(int w=0;w<WPT;w++) {
acc[w] = 0.0f;
}
int num_tiles = (K+TS-1)/TS;
for(int t=0;t<num_tiles;t++){
for(int w=0;w<WPT;w++){
int tiledRow = TS*t+row;
int tiledCol = TS*t+col;
if(globalRow + w*RTSF >= M || tiledCol >= K) {
Asub[row+w*RTSF][col]=0.0f;
}
else {
Asub[row+w*RTSF][col]=A[(globalRow+w*RTSF)*K+tiledCol];
}
if(tiledRow + w*RTSF >= K || globalCol >= N) {
Bsub[row+w*RTSF][col]=0.0f;
}
else {
Bsub[row+w*RTSF][col]=B[(tiledRow+w*RTSF)*N+globalCol];
}
}
__syncthreads();
for (int k = 0; k < TS; k++) {
for(int w=0;w<WPT;w++) {
acc[w] += Asub[row+w*RTSF][k]*Bsub[k][col];
}
}
__syncthreads();
}
for(int w=0;w<WPT;w++) {
if(globalRow + w*RTSF >= M || globalCol >= N) continue;
C[(globalRow+w*RTSF)*N+globalCol]=acc[w];
}
}
// Array of device (GPU) pointers
static float *a_d[MAX_NUM_GPU];
static float *b_d[MAX_NUM_GPU];
static float *c_d[MAX_NUM_GPU];
static int M, N, K;
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
// printf("M: %d, K: %d, N: %d\n",M, K, N);
//printf("MM: %d, KK: %d, NN: %d\n",MM, KK, NN);
// Launch kernel on every GPU
for (int i = 0; i < num_devices; i++) {
//dim3 blockDim(1, 1, 1);
//dim3 gridDim(Mend[i] - Mbegin[i], N, 1);
dim3 blockDim(TS/WPT, TS, 1);
dim3 gridDim(((Mend[i] - Mbegin[i] + TS-1)/TS), (N+TS-1)/TS, 1);
CUDA_CALL( cudaSetDevice(i) );
// if(K%TS==0&&K==N)
// sgemmO<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mbegin[i], N, K);
// else
// sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mbegin[i], N, K);
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mbegin[i], N, K);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
M = _M, N = _N, K = _K;
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// // Setup problem size for each GPU
// if(M%8) MM=(((M/8)+1)*8);
// else MM=M;
// if(K%8) KK=(((K/8)+1)*8);
// else KK=K;
// if(N%8) NN=(((N/8)+1)*8);
// else NN=N;
for (int i = 0; i < num_devices; i++) {
Mbegin[i] = (M / num_devices) * i;
Mend[i] = (M / num_devices) * (i + 1);
}
Mend[num_devices - 1] = M;
// for (int i = 0; i < num_devices; i++) {
// Mbegin[i] = (MM / num_devices) * i;
// Mend[i] = (MM / num_devices) * (i + 1);
// }
// Mend[num_devices - 1] = MM;
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
//CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * KK * sizeof(float)) );
//CUDA_CALL( cudaMalloc(&b_d[i], KK * NN * sizeof(float)) );
//CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * NN * sizeof(float)) );
}
// Upload A and B matrix to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K,
(Mend[i] - Mbegin[i]) * K * sizeof(float),
cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
// Do any post-matmul cleanup work here.
// Download C matrix from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i],
(Mend[i] - Mbegin[i]) * N * sizeof(float),
cudaMemcpyDeviceToHost) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}