chundoong-lab-ta/SamsungDS22/submissions/final/cheolkyoo.kim/B/convolution.cu

209 lines
6.4 KiB
Plaintext
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include "util.h"
#include "convolution.h"
#include <mpi.h>
#include <stdio.h>
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define MAX_NODES 2
#define MAX_NUM_GPU 4
#define TS 8
static float *input, *output, *filter;
static int N, C, H, W;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
static int num_devices;
static int Nstart[MAX_NUM_GPU], Nsize[MAX_NUM_GPU];
static int NN[MAX_NODES];
MPI_Status status;
MPI_Request request;
static float *input_d[MAX_NUM_GPU];
static float *output_d[MAX_NUM_GPU];
static float *filter_d[MAX_NUM_GPU];
__global__ void conv(
float *input, float *output, float *filter,
int N, int C, int H, int W,
int K, int R, int S,
int pad, int dilation, int stride) {
int OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
int OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
int n = blockIdx.x;
int k = blockIdx.y;
int oh = blockIdx.z;
int ow = threadIdx.x;
float o = 0.f;
for (int c = 0; c < C; ++c) {
for (int r = 0; r < R; ++r) {
for (int s = 0; s < S; ++s) {
int h = oh * stride - pad + r * dilation;
int w = ow * stride - pad + s * dilation;
if (h < 0 || h >= H || w < 0 || w >= W) continue;
float i = input[n * C * H * W + c * H * W + h * W + w];
float f = filter[k * C * R * S + c * R * S + r * S + s];
o += i * f;
}
}
}
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
}
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
input = _input;
output = _output;
filter = _filter;
// Scatter Input
if (mpi_rank == 0 && NN[1] != 0) {
MPI_Isend(&input[NN[0] * C * H * W], (NN[1] * C * H * W), MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
MPI_Isend(filter, (K * C * R * S), MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
} else if (mpi_rank == 1 && NN[mpi_rank] != 0) {
alloc_tensor(&input, NN[1], C, H, W);
alloc_tensor(&output, NN[1], K, OH, OW);
alloc_tensor(&filter, K, C, R, S);
MPI_Recv(input, (NN[1] * C * H * W), MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Recv(filter, (K * C * R * S), MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
}
if(NN[mpi_rank] < MAX_NUM_GPU) num_devices = NN[mpi_rank];
// Upload input and filter to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(input_d[i], input + Nstart[i] * C * H * W, Nsize[i] * C * H * W * sizeof(float), cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(filter_d[i], filter, K * C * R * S * sizeof(float), cudaMemcpyHostToDevice) );
}
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
for (int i = 0; i < num_devices; i++) {
dim3 gridDim(Nsize[i], K, OH);
dim3 blockDim(OW, 1);
CUDA_CALL( cudaSetDevice(i) );
conv<<<gridDim, blockDim>>>(input_d[i], output_d[i], filter_d[i], Nsize[i], C, H, W, K, R, S, pad, dilation, stride);
}
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
// Download output from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(output + Nstart[i] * K * OH * OW, output_d[i], Nsize[i] * K * OH * OW * sizeof(float), cudaMemcpyDeviceToHost) );
}
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
// Gather Output
if (mpi_rank == 0) {
MPI_Recv(&output[NN[0] * K * OH * OW], (NN[1] * K * OH * OW), MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status);
} else {
MPI_Isend(output, NN[1] * K * OH * OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
}
}
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
//printf("\nNode[%d] mpi_ramk = %d, mpi_world_size = %d\n", mpi_rank, mpi_rank, mpi_world_size);
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("Node[%d] [GPU %d] %s\n", mpi_rank, i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
if(mpi_world_size == 2) {
NN[0] = N - (N / 2);
NN[1] = N / 2;
} else {
NN[0] = N;
NN[1] = 0;
}
// Setup problem size for each GPU
if(NN[mpi_rank] < MAX_NUM_GPU) {
num_devices = NN[mpi_rank];
for(int i = 0; i < NN[mpi_rank]; i++) {
Nstart[i] = i;
Nsize[i] = 1;
}
} else {
for (int i = 0; i < num_devices; i++) {
Nstart[i] = (NN[mpi_rank] / num_devices) * i;
Nsize[i] = ((NN[mpi_rank] / num_devices) * (i + 1)) - Nstart[i];
}
Nsize[num_devices - 1] = NN[mpi_rank] - Nstart[num_devices - 1];
}
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&input_d[i], Nsize[i] * C * H * W * sizeof(float)) );
CUDA_CALL( cudaMalloc(&filter_d[i], K * C * R * S * sizeof(float)) );
CUDA_CALL( cudaMalloc(&output_d[i], Nsize[i] * K * OH * OW * sizeof(float)) );
}
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
}