305 lines
9.1 KiB
Plaintext
305 lines
9.1 KiB
Plaintext
|
#include "convolution.h"
|
||
|
#include <mpi.h>
|
||
|
#include <stdio.h>
|
||
|
#include <cuda_runtime.h>
|
||
|
#include "util.h"
|
||
|
|
||
|
#define TS 8
|
||
|
#define MAX_NODE 2
|
||
|
#define MAX_NUM_GPU 8
|
||
|
#define TILE_WIDTH 32
|
||
|
|
||
|
#define CUDA_CALL(f) \
|
||
|
{ \
|
||
|
cudaError_t err = (f); \
|
||
|
if (err != cudaSuccess) { \
|
||
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__,__LINE__, \
|
||
|
err, cudaGetErrorString(err)); \
|
||
|
exit(1); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static float *input, *output, *filter;
|
||
|
static int N, C, H, W;
|
||
|
static int K, R, S;
|
||
|
static int OH, OW;
|
||
|
static int pad;
|
||
|
static int dilation;
|
||
|
static int stride;
|
||
|
static int mpi_rank, mpi_world_size;
|
||
|
static float *in_d[MAX_NUM_GPU];
|
||
|
static float *out_d[MAX_NUM_GPU];
|
||
|
static float *fil_d[MAX_NUM_GPU];
|
||
|
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
|
||
|
static int MM[MAX_NUM_GPU];
|
||
|
int num_devices;
|
||
|
|
||
|
|
||
|
__global__ void conv(float *_input, float *_output, float *_filter,
|
||
|
int _N, int _C, int _H, int _W, int _K, int _R, int _S,
|
||
|
int _pad, int _dilation, int _stride){
|
||
|
|
||
|
// const int globalRow = blockDim.x * blockIdx.x + threadIdx.x;
|
||
|
// const int globalCol = blockDim.y * blockIdx.y + threadIdx.y;
|
||
|
int OH, OW;
|
||
|
|
||
|
OH = (_H + 2* _pad - _dilation*(_R-1) -1) /_stride + 1;
|
||
|
OW = (_W + 2* _pad - _dilation*(_S-1) -1) /_stride + 1;
|
||
|
|
||
|
// __shared__ float ds_i[TILE_WIDTH][TILE_WIDTH];
|
||
|
// __shared__ float ds_f[TILE_WIDTH][TILE_WIDTH];
|
||
|
|
||
|
int n = blockIdx.x;
|
||
|
int k = blockIdx.y;
|
||
|
int oh = blockIdx.z;
|
||
|
int ow = threadIdx.x;
|
||
|
|
||
|
|
||
|
float o = 0;
|
||
|
for(int c = 0; c < _C; c++){
|
||
|
for(int r=0; r< _R; r++){
|
||
|
for(int s=0; s< _S; s++){
|
||
|
int h = oh*_stride - _pad + r * _dilation;
|
||
|
int w = ow*_stride - _pad + s * _dilation;
|
||
|
if(h<0 || h>= _H || w<0 || w>= _W) continue;
|
||
|
float i = _input[n*_C*_H*_W + c*_H*_W +h*_W + w];
|
||
|
float f = _filter[k*_C*_R*_S + c*_R*_S + r*_S + s];
|
||
|
o += i*f;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
_output[n*_K*OH*OW + k*OH*OW + oh*OW + ow] = o;
|
||
|
}
|
||
|
|
||
|
void convolution(
|
||
|
float *_input, float *_output, float *_filter,
|
||
|
int _N, int _C, int _H, int _W,
|
||
|
int _K, int _R, int _S,
|
||
|
int _pad, int _dilation, int _stride) {
|
||
|
|
||
|
int size[MAX_NODE];
|
||
|
|
||
|
input = _input;
|
||
|
output = _output;
|
||
|
filter = _filter;
|
||
|
|
||
|
MPI_Request request;
|
||
|
MPI_Status status;
|
||
|
|
||
|
// if(mpi_world_size == 2)
|
||
|
// size[1] = _N/2;
|
||
|
// else
|
||
|
size[1] = 0;
|
||
|
|
||
|
size[0] = _N - size[1];
|
||
|
|
||
|
/* if(mpi_world_size == 2){
|
||
|
|
||
|
for(int i=0; i< num_devices; i++){
|
||
|
Mbegin[i] = (N/2) /num_devices * i;
|
||
|
Mend[i] = (N/2) /num_devices*(i+1);
|
||
|
}
|
||
|
for(int i=0; i< num_devices; i++){
|
||
|
Mbegin[i+4] = (N/2)/num_devices * i;
|
||
|
Mend[i+4] = (N/2)/num_devices*(i+1);
|
||
|
}
|
||
|
Mend[num_devices*2-1] = N;
|
||
|
|
||
|
for(int i=0; i<num_devices*2; i++){
|
||
|
MM[i] = Mend[i] - Mbegin[i];
|
||
|
}
|
||
|
}else{
|
||
|
*/
|
||
|
for(int i=0; i< num_devices; i++){
|
||
|
Mbegin[i] = (N/num_devices) * i;
|
||
|
Mend[i] = (N/num_devices)*(i+1);
|
||
|
}
|
||
|
Mend[num_devices-1] = N;
|
||
|
|
||
|
for(int i=0; i<num_devices; i++){
|
||
|
MM[i] = Mend[i] - Mbegin[i];
|
||
|
}
|
||
|
// }
|
||
|
|
||
|
OH = (H + 2*pad - dilation*(R -1) -1)/stride +1;
|
||
|
OW = (W + 2*pad - dilation*(S -1) -1)/stride +1;
|
||
|
|
||
|
/*
|
||
|
if(mpi_rank == 0 && mpi_world_size == 2){
|
||
|
MPI_Isend(&input[size[0]*_C*_H*_W], size[1]*_C*_H*_W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
|
||
|
MPI_Isend(filter, _K*_C*_R*_S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
|
||
|
}
|
||
|
else if(mpi_world_size == 2){
|
||
|
alloc_tensor(&input, size[1], _C, _H, _W);
|
||
|
alloc_tensor(&output, size[1], _K, OH, OW);
|
||
|
alloc_tensor(&filter, _K, _C, _R, _S);
|
||
|
MPI_Recv(input, size[1]*_C*_H*_W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
|
||
|
MPI_Recv(filter, _K*_C*_R*_S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
|
||
|
}
|
||
|
*/
|
||
|
if(mpi_rank == 0){
|
||
|
for(int i=0; i< num_devices ; i++){
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
CUDA_CALL( cudaMalloc(&in_d[i], MM[i]*_C*_H*_W*sizeof(float)));
|
||
|
CUDA_CALL( cudaMalloc(&out_d[i], MM[i]*_K*OH*OW*sizeof(float)));
|
||
|
CUDA_CALL( cudaMalloc(&fil_d[i], _K*_C*_R*_S*sizeof(float)));
|
||
|
}
|
||
|
|
||
|
for(int i=0; i< num_devices; i++){
|
||
|
CUDA_CALL( cudaMemcpy(in_d[i], _input + Mbegin[i]*_C*_H*_W, MM[i]*_C*_H*_W*sizeof(float), cudaMemcpyHostToDevice));
|
||
|
CUDA_CALL( cudaMemcpy(fil_d[i], _filter, _K*_C*_R*_S*sizeof(float), cudaMemcpyHostToDevice));
|
||
|
}
|
||
|
|
||
|
for(int i=0; i <num_devices; i++){
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
//printf("check1\n");
|
||
|
for(int i=0; i<num_devices; i++){
|
||
|
dim3 blockDim(OW, 1);
|
||
|
dim3 gridDim(MM[i],_K,OH);
|
||
|
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
conv<<<gridDim, blockDim>>>(in_d[i],out_d[i],fil_d[i],MM[i],_C,_H,_W,_K,_R,_S,_pad,_dilation,_stride);
|
||
|
}
|
||
|
// printf("check2\n");
|
||
|
for(int i=0; i< num_devices; i++){
|
||
|
CUDA_CALL( cudaDeviceSynchronize());
|
||
|
}
|
||
|
}
|
||
|
else{
|
||
|
/* printf("no 1\n");
|
||
|
for(int i=0; i< num_devices; i++){
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
CUDA_CALL( cudaMalloc(&in_d[i+4], MM[i+4]*_C*_H*_W*sizeof(float)));
|
||
|
CUDA_CALL( cudaMalloc(&out_d[i+4], MM[i+4]*_K*OH*OW*sizeof(float)));
|
||
|
CUDA_CALL( cudaMalloc(&fil_d[i+4], _K*_C*_R*_S*sizeof(float)));
|
||
|
}
|
||
|
printf("no 2\n");
|
||
|
for(int i=0; i< num_devices; i++){
|
||
|
CUDA_CALL( cudaMemcpy(in_d[i+4], _input + Mbegin[i+4]*_C*_H*_W, MM[i+4]*_C*_H*_W*sizeof(float), cudaMemcpyHostToDevice));
|
||
|
CUDA_CALL( cudaMemcpy(fil_d[i+4], _filter, _K*_C*_R*_S*sizeof(float), cudaMemcpyHostToDevice));
|
||
|
}
|
||
|
printf("no 3\n");
|
||
|
for(int i=0; i <num_devices; i++){
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
printf("check1\n");
|
||
|
for(int i=0; i<num_devices; i++){
|
||
|
dim3 blockDim(OW, 1);
|
||
|
dim3 gridDim(MM[i+4],_K,OH);
|
||
|
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
conv<<<gridDim, blockDim>>>(in_d[i+4],out_d[i+4],fil_d[i+4],MM[i+4],_C,_H,_W,_K,_R,_S,_pad,_dilation,_stride);
|
||
|
}
|
||
|
printf("check2\n");
|
||
|
for(int i=0; i< num_devices; i++){
|
||
|
CUDA_CALL( cudaDeviceSynchronize());
|
||
|
*/// }
|
||
|
}
|
||
|
// printf("check3\n");
|
||
|
}
|
||
|
|
||
|
|
||
|
void convolution_init(
|
||
|
int _N, int _C, int _H, int _W,
|
||
|
int _K, int _R, int _S,
|
||
|
int _pad, int _dilation, int _stride) {
|
||
|
N = _N; C = _C; H = _H; W = _W;
|
||
|
K = _K; R = _R; S = _S;
|
||
|
pad = _pad;
|
||
|
dilation = _dilation;
|
||
|
stride = _stride;
|
||
|
|
||
|
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
|
||
|
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
|
||
|
|
||
|
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
|
||
|
|
||
|
|
||
|
// printf("Using %d devices\n", num_devices);
|
||
|
for(int i=0; i< num_devices; i++){
|
||
|
cudaDeviceProp prop;
|
||
|
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
|
||
|
|
||
|
printf("[GPU %d] %s\n", i, prop.name);
|
||
|
}
|
||
|
|
||
|
if(num_devices <= 0){
|
||
|
printf("No CUDA device found. Aborting\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
/*
|
||
|
if(mpi_world_size == 2){
|
||
|
size[1] = _N/2;
|
||
|
node_num = 2;
|
||
|
}
|
||
|
else {
|
||
|
size[1] = 0;
|
||
|
node_num = 1;
|
||
|
}
|
||
|
|
||
|
size[0] = N - size[1];
|
||
|
|
||
|
for(int i=0; i< num_devices; i++){
|
||
|
Mbegin[i] = (N/num_devices) * i;
|
||
|
Mend[i] = (N/num_devices)*(i+1);
|
||
|
}
|
||
|
Mend[num_devices-1] = N;
|
||
|
|
||
|
for(int i=0; i<num_devices; i++){
|
||
|
MM[i] = Mend[i] - Mbegin[i];
|
||
|
}
|
||
|
*/
|
||
|
/*
|
||
|
OH = (H + 2*pad - dilation*(R -1) -1)/stride +1;
|
||
|
OW = (W + 2*pad - dilation*(S -1) -1)/stride +1;
|
||
|
|
||
|
for(int i=0; i< num_devices ; i++){
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
CUDA_CALL( cudaMalloc(&in_d[i], MM[i]*_C*_H*_W*sizeof(float)));
|
||
|
CUDA_CALL( cudaMalloc(&out_d[i], MM[i]*_K*OH*OW*sizeof(float)));
|
||
|
CUDA_CALL( cudaMalloc(&fil_d[i], _K*_C*_R*_S*sizeof(float)));
|
||
|
}
|
||
|
|
||
|
for(int i=0; i< num_devices; i++){
|
||
|
CUDA_CALL( cudaMemcpy(in_d[i], _input + Mbegin[i]*_C*_H*_W, MM[i]*_C*_H*_W*sizeof(float), cudaMemcpyHostToDevice));
|
||
|
CUDA_CALL( cudaMemcpy(fil_d[i], _filter, _K*_C*_R*_S*sizeof(float), cudaMemcpyHostToDevice));
|
||
|
}
|
||
|
|
||
|
for(int i=0; i <num_devices; i++){
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
void convolution_final(
|
||
|
int _N, int _C, int _H, int _W,
|
||
|
int _K, int _R, int _S,
|
||
|
int _pad, int _dilation, int _stride) {
|
||
|
|
||
|
/* if(mpi_rank == 0 && mpi_world_size == 2){
|
||
|
printf("final 1\n");
|
||
|
for(int i=0; i<num_devices*2; i++){
|
||
|
CUDA_CALL( cudaMemcpy(output+Mbegin[i]*K*OH*OW, out_d[i], MM[i]*K*OH*OW*sizeof(float), cudaMemcpyDeviceToHost));
|
||
|
}
|
||
|
printf("final 2\n");
|
||
|
for(int i = 0; i < num_devices*2;i++){
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}else if(mpi_rank == 0 && mpi_world_size == 1){
|
||
|
|
||
|
*/
|
||
|
if(mpi_rank == 0){
|
||
|
for(int i=0; i<num_devices; i++){
|
||
|
CUDA_CALL( cudaMemcpy(output+Mbegin[i]*K*OH*OW, out_d[i], MM[i]*K*OH*OW*sizeof(float), cudaMemcpyDeviceToHost));
|
||
|
}
|
||
|
|
||
|
for(int i = 0; i < num_devices;i++){
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}}
|
||
|
// }
|
||
|
//printf("Done\n");
|
||
|
}
|