chundoong-lab-ta/SamsungDS22/submissions/final/jungin45.kim/B/convolution.cpp

105 lines
2.8 KiB
C++
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include "convolution.h"
#include <mpi.h>
#include <stdio.h>
#include "util.h"
extern void cuda_mem_init(int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride);
extern void cuda_conv_init(float *input, float *filter, float *output);
extern void cuda_conv_final(float *output);
extern void cuda_conv();
static float *input, *output, *filter;
static int N, C, H, W;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
#define MAX_NODE 2
static int size[MAX_NODE], offset[MAX_NODE];
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
MPI_Request request;
MPI_Status status;
if(mpi_rank == 0) {
input = _input;
output = _output;
filter = _filter;
for (int node=1; node < mpi_world_size; node++) {
MPI_Isend(&input[offset[node]*C*H*W], size[node]*C*H*W, MPI_FLOAT, node, 0, MPI_COMM_WORLD, &request);
MPI_Isend(filter, K*C*R*S, MPI_FLOAT, node, 0, MPI_COMM_WORLD, &request);
}
}
else {
MPI_Recv(input, size[mpi_rank]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
}
cuda_conv_init(input, filter, output);
cuda_conv();
cuda_conv_final(output);
if(mpi_rank == 0) {
for (int node=1; node < mpi_world_size; node++) {
MPI_Recv(&output[offset[node]*K*OH*OW], size[node]*K*OH*OW, MPI_FLOAT, node, 0, MPI_COMM_WORLD, &status);
}
}
else {
MPI_Isend(output, size[mpi_rank]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
}
}
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
//Calc partitioned size
for (int i=0; i < mpi_world_size; i++) {
int st = i * (N/mpi_world_size);
int ed = i == mpi_world_size-1 ? N : (i+1)*(N/mpi_world_size);
size[i] = ed - st;
offset[i] = st;
}
if(mpi_rank != 0) {
alloc_tensor(&input, size[mpi_rank], C, H, W);
alloc_tensor(&output, size[mpi_rank], K, OH, OW);
alloc_tensor(&filter, K, C, R, S);
}
cuda_mem_init(size[mpi_rank], C, H, W, K, R, S, pad, dilation, stride);
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
}