chundoong-lab-ta/SamsungDS22/submissions/final/ty.jeon/B/convolution.cu

285 lines
7.9 KiB
Plaintext
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include "convolution.h"
#include <mpi.h>
#include <stdio.h>
#include <cstdio>
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define TS 32
#define MAX_NUM_GPU 4
int num_devices = 0;
static float *input, *output, *filter;
static int N, C, H, W;
static int N_mpi_aware;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
static float * input_d[MAX_NUM_GPU];
static float * filter_d[MAX_NUM_GPU];
static float * output_d[MAX_NUM_GPU];
static int Nbegin[MAX_NUM_GPU];
static int Nend[MAX_NUM_GPU];
static int input_size;
static int input_middle;
static int filter_size;
static int output_size;
static int output_middle;
__global__ void conv(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride,
int OH, int OW) {
const int globalRow = blockDim.x * blockIdx.x + threadIdx.x;
const int globalCol = blockDim.y * blockIdx.y + threadIdx.y;
//int OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1;
//int OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1;
int n, k, w;
w = globalCol;
n = w / (_K * OW);
w = w - n * (_K * OW);
k = w / OW;
w = w - k * OW;
int col = w;
int row = globalRow;
if(globalRow >= OH || globalCol >= _N * _K * OW) return;
int start_row = row * _stride - _pad;
int start_col = col * _stride - _pad;
float o = 0.0f;
for(int c = 0; c < _C; c++){
for(int i = 0; i <_R; i++){
for(int j = 0; j < _S; j++){
int h = start_row + i * _dilation;
int w = start_col + j * _dilation;
if(h < 0 || w < 0 || h >= _H || w >= _W) continue;
float in = _input[n*_C*_W*_H + c*_W*_H + h*_W + w];
float fil = _filter[k*_C*_R*_S + c*_R*_S + i*_S + j];
o += in * fil;
}
}
}
_output[n*_K*OH*OW + k*OH*OW + row*OW + col] = o;
}
void convolution_gpu(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
output = _output;
//printf("\n\n\n\nhead of convolution_gpu %d\n\n\n\n\n", mpi_rank);
//int OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1;
//int OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1;
for (int i = 0; i < num_devices; i++) {
//CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMemcpy(input_d[i], _input + Nbegin[i]*_C*_H*_W, (Nend[i] - Nbegin[i])*_C*_H*_W* sizeof(float), cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(filter_d[i], _filter, _K*_C*_R*_S*sizeof(float), cudaMemcpyHostToDevice) );
}
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
dim3 blockDim(TS, TS, 1);
for(int i = 0; i < num_devices; i++){
dim3 gridDim((OH + TS + 1)/TS, ((Nend[i] - Nbegin[i])*_K*OW + TS - 1)/TS, 1);
CUDA_CALL( cudaSetDevice(i) );
conv<<<gridDim, blockDim>>>(input_d[i], output_d[i], filter_d[i], Nend[i] - Nbegin[i], _C, _H, _W, _K ,_R, _S, _pad, _dilation, _stride, OH, OW);
}
}
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
MPI_Request mpi_request;
MPI_Status mpi_status;
//N_mpi_aware = N;
if(mpi_rank == 0){
input = _input;
output = _output;
filter = _filter;
if(mpi_world_size == 2){
MPI_Isend(input + input_middle, input_size - input_middle, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &mpi_request);
MPI_Isend(filter, filter_size, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &mpi_request);
//N_mpi_aware = N/2;
//printf("0 N_size : %d\n", N_size);
}
}
else{
input = (float *) aligned_alloc(32, sizeof(float) * (input_size - input_middle));
filter = (float *) aligned_alloc(32, sizeof(float) * filter_size);
output = (float *) aligned_alloc(32, sizeof(float) * (output_size - output_middle));
MPI_Recv(input, input_size - input_middle, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &mpi_status);
MPI_Recv(filter, filter_size, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &mpi_status);
//N_mpi_aware = N - N/2;
//printf("1 N_size : %d\n", N_size);
}
//printf("call core : %d\n", N_size);
convolution_gpu( input, output, filter,
N_mpi_aware, C, H, W,
K, R, S,
pad, dilation, stride);
//printf("core finished\n");
}
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
input_size = N * C * H * W;
input_middle = (N/2) * C * H * W;
filter_size = K * C * R * S;
output_size = N * K * OH * OW;
output_middle = (N/2) * K * OH * OW;
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
if(mpi_world_size == 2){
if(mpi_rank == 0){
N_mpi_aware = N/2;
// printf("N_mpi_aware %d : %d\n", mpi_rank, N_mpi_aware);
}
else{
N_mpi_aware = N - N/2;
// printf("N_mpi_aware %d : %d\n", mpi_rank, N_mpi_aware);
}
}
else{
N_mpi_aware = N;
//printf("mpi_world_size 1, N_mpi_aware %d : %d\n", mpi_rank, N_mpi_aware);
}
if(num_devices > N_mpi_aware){
num_devices = 1;
Nbegin[0] = 0;
Nend[0] = N_mpi_aware;
}
else{
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Nbegin[i] = (N_mpi_aware / num_devices) * i;
Nend[i] = (N_mpi_aware / num_devices) * (i + 1);
}
Nend[num_devices - 1] = N_mpi_aware;
}
//// debug print
//for(int i = 0; i < num_devices; i++){
// printf("%d : Nbegin[%d] == %d / Nend[%d] == %d\n", mpi_rank, i, Nbegin[i], i, Nend[i]);
//}
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&input_d[i], (Nend[i] - Nbegin[i])*C*H*W* sizeof(float)) );
CUDA_CALL( cudaMalloc(&filter_d[i], filter_size*sizeof(float)) );
CUDA_CALL( cudaMalloc(&output_d[i], (Nend[i] - Nbegin[i])*K*OH*OW*sizeof(float)) );
//printf("%d : cuda malloc %d\n", mpi_rank, i);
}
for(int i = 0; i < num_devices; i++){
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
//if(mpi_rank == 1) return;
//OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1;
//OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1;
MPI_Request mpi_request;
MPI_Status mpi_status;
for(int i = 0; i < num_devices; i++){
CUDA_CALL( cudaMemcpy(output + Nbegin[i]*K*OH*OW, output_d[i], (Nend[i] - Nbegin[i])*K*OH*OW*sizeof(float), cudaMemcpyDeviceToHost) );
}
for(int i = 0; i < num_devices; i++){
CUDA_CALL( cudaDeviceSynchronize() );
}
if(mpi_world_size == 2){
if(mpi_rank == 0){
//printf("rank 0 recv : %d\n", output_size - output_middle);
MPI_Recv(output + output_middle, output_size - output_middle, MPI_FLOAT, 1, 1, MPI_COMM_WORLD, &mpi_status);
}
else{
//printf("rank 1 send : %d\n", output_size - output_middle);
MPI_Isend(output, output_size - output_middle, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &mpi_request);
}
}
}