163 lines
4.9 KiB
Plaintext
163 lines
4.9 KiB
Plaintext
|
#include "mat_mul.h"
|
||
|
|
||
|
#include <cstdio>
|
||
|
#include <cuda_runtime.h>
|
||
|
|
||
|
#define CUDA_CALL(f) \
|
||
|
{ \
|
||
|
cudaError_t err = (f); \
|
||
|
if (err != cudaSuccess) { \
|
||
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
|
||
|
err, cudaGetErrorString(err)); \
|
||
|
exit(1); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define MAX_NUM_GPU 4
|
||
|
int num_devices = 0;
|
||
|
|
||
|
//#define TS 8
|
||
|
#define TS 16
|
||
|
//#define TS 32 //about 9000
|
||
|
|
||
|
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
|
||
|
// int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||
|
// int j = blockDim.y * blockIdx.y + threadIdx.y;
|
||
|
/*
|
||
|
if (i >= M || j >= N)
|
||
|
return;
|
||
|
|
||
|
C[i * N + j] = 0;
|
||
|
for (int k = 0; k < K; ++k) {
|
||
|
C[i * N + j] += A[i * K + k] * B[k * N + j];
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
|
||
|
__shared__ float ds_M[TS][TS];
|
||
|
__shared__ float ds_N[TS][TS];
|
||
|
int bx = blockIdx.x, by = blockIdx.y,
|
||
|
tx = threadIdx.x, ty = threadIdx.y,
|
||
|
Row = by * TS + ty,
|
||
|
Col = bx * TS + tx;
|
||
|
float Pvalue = 0;
|
||
|
|
||
|
int min = (K%TS!=0 && K<TS) ? K : TS;
|
||
|
|
||
|
for (int m = 0; m < (K-1)/TS+1; m++) {
|
||
|
if (Row < M && m*TS+tx < K)
|
||
|
ds_M[ty][tx] = A[Row*K + m*TS+tx];
|
||
|
else
|
||
|
ds_M[ty][tx] = 0;
|
||
|
if (Col < N && m*TS+ty < K)
|
||
|
ds_N[ty][tx] = B[(m*TS+ty)*N+Col];
|
||
|
else
|
||
|
ds_N[ty][tx] = 0;
|
||
|
|
||
|
__syncthreads();
|
||
|
//for (int k = 0; k < (K-1)/TS+1; ++k)
|
||
|
for (int k = 0; k < min; ++k)
|
||
|
Pvalue += ds_M[ty][k] * ds_N[k][tx];
|
||
|
__syncthreads();
|
||
|
}
|
||
|
if (Row < M && Col < N)
|
||
|
C[Row*N+Col] = Pvalue;
|
||
|
}
|
||
|
|
||
|
// Array of device (GPU) pointers
|
||
|
static float *a_d[MAX_NUM_GPU];
|
||
|
static float *b_d[MAX_NUM_GPU];
|
||
|
static float *c_d[MAX_NUM_GPU];
|
||
|
static int M, N, K;
|
||
|
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
|
||
|
|
||
|
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
|
||
|
|
||
|
// Launch kernel on every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
// dim3 blockDim(1, 1, 1);
|
||
|
// dim3 gridDim(Mend[i] - Mbegin[i], N, 1);
|
||
|
// dim3 blockDim(TS, TS, 1);
|
||
|
// dim3 gridDim(Mend[i] - Mbegin[i], N, 1);
|
||
|
// dim3 dimGrid((numCColumns-1)/TILE_WIDTH+1, (numCRows-1)/TILE_WIDTH+1, 1);
|
||
|
// dim3 gridDim((N-1)/TS+1, ((M-1)/4-1)/TS+1, 1);
|
||
|
// dim3 gridDim((Mend[i] - Mbegin[i] -1)/TS+1, (N-1)/TS+1, 1);
|
||
|
dim3 gridDim((N-1)/TS+1, (Mend[i] - Mbegin[i]-1)/TS+1, 1);
|
||
|
dim3 blockDim(TS, TS, 1);
|
||
|
|
||
|
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
//sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], M, N, K);
|
||
|
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mbegin[i], N, K);
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
|
||
|
M = _M, N = _N, K = _K;
|
||
|
|
||
|
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
|
||
|
|
||
|
printf("Using %d devices\n", num_devices);
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
cudaDeviceProp prop;
|
||
|
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
|
||
|
|
||
|
// Try printing more detailed information here
|
||
|
printf("[GPU %d] %s\n", i, prop.name);
|
||
|
}
|
||
|
|
||
|
if (num_devices <= 0) {
|
||
|
printf("No CUDA device found. Aborting\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
// Setup problem size for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
Mbegin[i] = (M / num_devices) * i;
|
||
|
Mend[i] = (M / num_devices) * (i + 1);
|
||
|
}
|
||
|
Mend[num_devices - 1] = M;
|
||
|
|
||
|
// Allocate device memory for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
|
||
|
}
|
||
|
|
||
|
// Upload A and B matrix to every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K,
|
||
|
(Mend[i] - Mbegin[i]) * K * sizeof(float),
|
||
|
cudaMemcpyHostToDevice) );
|
||
|
CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
|
||
|
// Do any post-matmul cleanup work here.
|
||
|
|
||
|
// Download C matrix from GPUs
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i],
|
||
|
(Mend[i] - Mbegin[i]) * N * sizeof(float),
|
||
|
cudaMemcpyDeviceToHost) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|