chundoong-lab-ta/SamsungDS22/submissions/final/hj614.yoo/tmp-B/convolution.cu

233 lines
6.9 KiB
Plaintext
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include "convolution.h"
#include "util.h"
#include <mpi.h>
#include <stdio.h>
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define MAX_NUM_GPU (4)
#define BLOCK_SIZE (1024)
int num_devices = 0;
static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU], Nsize[MAX_NUM_GPU], Nslice;
// Array of device (GPU) pointers
static float *i_d[MAX_NUM_GPU];
static float *f_d[MAX_NUM_GPU];
static float *o_d[MAX_NUM_GPU];
static float *input, *output, *filter;
static int N, C, H, W;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
int sn, en, firstSize, modN;
__global__ void convOpt(
float *input, float *output, float *filter,
int N, int C, int H, int W,
int K, int R, int S,
int pad, int dilation, int stride) {
int OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
int OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
int now = blockDim.x * blockIdx.x + threadIdx.x;
int k = blockIdx.y;
int oh = blockIdx.z;
int n = now / OW;
int ow = now % OW;
if (oh >= OH || ow >= OW || k >= K || n >= N) return;
//for (int n = 0; n < N; ++n)
{
//for (int k = 0; k < K; ++k)
{
float o = 0.0f;
for (int c = 0; c < C; ++c) {
for (int r = 0; r < R; ++r) {
for (int s = 0; s < S; ++s) {
int h = oh * stride - pad + r * dilation;
int w = ow * stride - pad + s * dilation;
if (h < 0 || h >= H || w < 0 || w >= W) continue;
float i = input[n*C*H*W + c*H*W + h*W + w];
float f = filter[k*C*R*S + c*R*S + r*S + s];
o += i * f;
}
}
}
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
}
}
}
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
input = _input;
output = _output;
filter = _filter;
MPI_Request request[2];
MPI_Status status[2];
if (N > 1)
{
if (mpi_rank == 0)
{
int snTmp = firstSize;
int enTmp = N;
MPI_Isend(input+snTmp*C*H*W, (enTmp-snTmp)*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request[0]);
MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request[1]);
}
else
{
if (modN > 0)
{
alloc_tensor(&input, modN, C, H, W);
alloc_tensor(&output, modN, K, OH, OW);
alloc_tensor(&filter, K, C, R, S);
}
MPI_Irecv(input, modN*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request[0]);
MPI_Irecv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request[1]);
}
MPI_Waitall(2,request, status);
}
if (modN > 0) {
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&i_d[i], Nsize[i]*C*H*W * sizeof(float)) );
CUDA_CALL( cudaMalloc(&f_d[i], K*C*R*S * sizeof(float)) );
CUDA_CALL( cudaMalloc(&o_d[i], Nsize[i]*K*OH*OW * sizeof(float)) );
}
// Upload A and B matrix to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMemcpy(i_d[i], input + Nbegin[i]*C*H*W,
Nsize[i]*C*H*W * sizeof(float),
cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(f_d[i], filter,
K*C*R*S * sizeof(float),
cudaMemcpyHostToDevice) );
}
// Launch kernel on every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
dim3 blockDim(BLOCK_SIZE, 1, 1);
dim3 gridDim((Nsize[i]*OW+BLOCK_SIZE-1)/BLOCK_SIZE, K, OH);
convOpt<<<gridDim, blockDim>>>(i_d[i], o_d[i], f_d[i], Nsize[i],
C, H, W, K, R, S,
pad, dilation, stride);
}
// Download output matrix from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMemcpy(output + Nbegin[i]*K*OH*OW, o_d[i],
Nsize[i]*K*OH*OW * sizeof(float),
cudaMemcpyDeviceToHost) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
}
if (N > 1)
{
if (mpi_rank == 0)
{
int snTmp = firstSize;
int enTmp = N;
MPI_Irecv(output+snTmp*K*OH*OW, (enTmp-snTmp)*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request[0]);
}
else
{
MPI_Isend(output, modN*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request[0]);
}
MPI_Wait(&request[0], &status[0]);
}
}
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
firstSize = (N + 1) / mpi_world_size;
if (mpi_rank == 0)
{
sn = 0;
en = firstSize;
modN = firstSize;
}
else
{
sn = firstSize;
en = N;
modN = N - firstSize;
}
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
//printf("Using %d devices\n", num_devices);
Nslice = (modN + num_devices - 1) / num_devices;
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
//printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
//printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Nbegin[i] = Nslice * i;
if (Nbegin[i] + Nslice < modN)
Nend[i] = Nbegin[i] + Nslice;
else if (Nbegin[i] < modN)
Nend[i] = modN;
else
Nbegin[i]=0, Nend[i] = 0;
Nsize[i] = Nend[i] - Nbegin[i];
}
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
if (N > 1 && mpi_rank != 0)
{
free(input);
free(output);
free(filter);
}
}