chundoong-lab-ta/APWS23/project/reference/bin2img.py

39 lines
1.1 KiB
Python
Raw Normal View History

from PIL import Image
import torch.nn.functional as F
import torch
import sys
import numpy as np
imgSize = (1,2,640,959)
def mask_to_image(mask: np.ndarray, mask_values):
if isinstance(mask_values[0], list):
out = np.zeros((mask.shape[-2], mask.shape[-1], len(mask_values[0])), dtype=np.uint8)
elif mask_values == [0, 1]:
out = np.zeros((mask.shape[-2], mask.shape[-1]), dtype=bool)
else:
out = np.zeros((mask.shape[-2], mask.shape[-1]), dtype=np.uint8)
if mask.ndim == 3:
mask = np.argmax(mask, axis=0)
for i, v in enumerate(mask_values):
out[mask == i] = v
return Image.fromarray(out)
if __name__=='__main__':
state_dict = torch.load('MODEL.pth', map_location=torch.device('cpu') )
mask_values = state_dict.pop('mask_values', [0, 1])
img = np.fromfile(sys.argv[1], dtype=np.float32)
img = torch.from_numpy(img).reshape(imgSize)
img = F.interpolate(img, (640*2, 959*2), mode='bilinear')
mask = img.argmax(dim=1)
mask = mask[0].long().squeeze().numpy()
result = mask_to_image(mask, mask_values)
result.save(sys.argv[2])