chundoong-lab-ta/SamsungDS22/submissions/HW6/dc.yang/mat_mul.cu

194 lines
6.0 KiB
Plaintext
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include "mat_mul.h"
#include <cstdio>
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define TS 32 // The square-root of the 2D tile-size (== work-group dims)
// Constants for kernels 3, 5
#define WPT 8 // The amount of work-per-thread, i.e. the thread-coarsening factor
#define RTS (TS/WPT) // The reduced tile-size in one dimension
#define MAX_NUM_GPU 4
int num_devices = 0;
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
// Thread identifiers
// const int row = get_local_id(0); // Local row ID (max: TS)
// const int col = get_local_id(1); // Local col ID (max: TS/WPT == RTS)
// const int globalRow = TS*get_group_id(0) + row; // Row ID of C (0..M)
// const int globalCol = TS*get_group_id(1) + col; // Col ID of C (0..N)
int row = threadIdx.x;
int col = threadIdx.y;
int globalRow = (blockDim.x*WPT) * blockIdx.x + threadIdx.x;
int globalCol = blockDim.y * blockIdx.y + threadIdx.y;
// Local memory to fit a tile of TS*TS elements of A and B
// __local float Asub[TS][TS];
// __local float Bsub[TS][TS];
__shared__ float Asub[TS][TS];
__shared__ float Bsub[TS][TS];
// Initialise the accumulation registers
float acc[WPT];
for (int w=0; w<WPT; w++) {
acc[w] = 0.0f;
}
// Loop over all tiles
const int numTiles = (K + TS - 1) / TS;
for (int t=0; t<numTiles; t++) {
// Load one tile of A and B into local memory
for (int w=0; w<WPT; w++) {
const int tiledRow = TS*t + row;
const int tiledCol = TS*t + col;
if(globalRow + w*RTS >= M || tiledCol >= K)
{
Asub[row + w*RTS][col] = 0.0f;
}
else
{
Asub[row + w*RTS][col] = A[(globalRow + w*RTS)*K + tiledCol];
}
if(globalCol >= N || tiledRow + w*RTS >= K)
{
Bsub[row + w*RTS][col] = 0.0f;
}
else
{
Bsub[row + w*RTS][col] = B[(tiledRow + w*RTS)*N + globalCol];
}
}
// Synchronise to make sure the tile is loaded
//barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
// Perform the computation for a single tile
for (int k=0; k<TS; k++) {
for (int w=0; w<WPT; w++) {
acc[w] += Asub[row + w*RTS][k] * Bsub[k][col];
}
}
// Synchronise before loading the next tile
//barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
}
// Store the final results in C
for (int w=0; w<WPT; w++) {
if(globalRow + w*RTS >= M || globalCol >= N)
{
continue;
}
else
{
C[(globalRow + w*RTS)*N + globalCol] = acc[w];
}
}
}
// Array of device (GPU) pointers
static float *a_d[MAX_NUM_GPU];
static float *b_d[MAX_NUM_GPU];
static float *c_d[MAX_NUM_GPU];
static int M, N, K;
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
// Launch kernel on every GPU
for (int i = 0; i < num_devices; i++) {
//dim3 blockDim(4, 4, 2);
//dim3 gridDim(Mend[i] - Mbegin[i], N, 1);
dim3 blockDim(TS/WPT, TS, 1);
dim3 gridDim(((Mend[i] - Mbegin[i]+TS-1)/TS), (N+TS-1)/TS, 1);
CUDA_CALL( cudaSetDevice(i) );
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], M, N, K);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
M = _M, N = _N, K = _K;
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Mbegin[i] = (M / num_devices) * i;
Mend[i] = (M / num_devices) * (i + 1);
}
Mend[num_devices - 1] = M;
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
}
// Upload A and B matrix to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K,
(Mend[i] - Mbegin[i]) * K * sizeof(float),
cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
// Do any post-matmul cleanup work here.
// Download C matrix from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i],
(Mend[i] - Mbegin[i]) * N * sizeof(float),
cudaMemcpyDeviceToHost) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}