chundoong-lab-ta/SamsungDS22/submissions/HW6/jaehyun5.kim/mat_mul.cu

174 lines
5.4 KiB
Plaintext
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include "mat_mul.h"
#include <cstdio>
#include <cuda_runtime.h>
#define TS 32
#define WPT 8
#define RTS (TS/WPT)
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define MAX_NUM_GPU 4
int num_devices = 4;
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
const int i = threadIdx.x; // row index of C
const int j = threadIdx.y; // column index of C
const int gi = (blockDim.x*WPT)*blockIdx.x+threadIdx.x;
const int gj = blockDim.y * blockIdx.y + threadIdx.y;
/*
int i = blockDim.x * blockIdx.x + threadIdx.x;
int j = blockDim.y * blockIdx.y + threadIdx.y;
if (i >= M || j >= N)
return;*/
__shared__ float Asub[TS][TS];
__shared__ float Bsub[TS][TS];
float intermediate_val[WPT];
for(int w=0;w<WPT;w++){
intermediate_val[w] = 0.0f;
}
const int num_tile = (K+TS-1) / TS;
for(int t=0;t<num_tile; t++){
for(int w=0;w<WPT;w++){
const int t_row = TS * t + i;
const int t_col = TS * t + j;
if(M-1<(gi+w*RTS)){
Asub[i + w * RTS][j] = 0.0f;}
else if(K-1<(t_col)){
Asub[i + w * RTS][j] = 0.0f;}
else {
Asub[i + w * RTS][j] = A[(gi + w * RTS) * K + t_col];}
if(K-1<(t_row+w*RTS)){
Bsub[i + w * RTS][j] = 0.0f;}
else if(N-1<(gj)){
Bsub[i + w * RTS][j] = 0.0f;}
else{
Bsub[i + w * RTS][j] = B[(t_row + w * RTS) * N + gj];}
}
//barriear(CLK_LOCAL_MEM_FENCE);
__syncthreads();
for(int k=0;k<TS;k++){
for(int w=0;w<WPT;w++){
intermediate_val[w] += Asub[i + w * RTS][k] * Bsub[k][j];
}
}
__syncthreads();
//barrier(CLK_LOCAL_MEM_FENCE);
}
for(int w=0;w<WPT;w++){
if(M>(gi+w*RTS) && N>gj)
C[(gi + w * RTS)* N + gj] = intermediate_val[w];
}
/* C[i * N + j] = 0;
for (int k = 0; k < K; ++k) {
C[i * N + j] += A[i * K + k] * B[k * N + j];
}*/
}
// Array of device (GPU) pointers
static float *a_d[MAX_NUM_GPU];
static float *b_d[MAX_NUM_GPU];
static float *c_d[MAX_NUM_GPU];
static int M, N, K;
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
// Launch kernel on every GPU
for (int i = 0; i < num_devices; i++) {
//dim3 blockDim(1, 1, 1);
dim3 blockDim(TS/WPT, TS,1);
dim3 gridDim(((Mend[i]-Mbegin[i]+TS-1)/TS), (N+TS-1)/TS, 1);
//dim3 gridDim(Mend[i] - Mbegin[i], N, 1);
CUDA_CALL( cudaSetDevice(i) );
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], M, N, K);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
M = _M, N = _N, K = _K;
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Mbegin[i] = (M / num_devices) * i;
Mend[i] = (M / num_devices) * (i + 1);
}
Mend[num_devices - 1] = M;
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
}
// Upload A and B matrix to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K,
(Mend[i] - Mbegin[i]) * K * sizeof(float),
cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
// Do any post-matmul cleanup work here.
// Download C matrix from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i],
(Mend[i] - Mbegin[i]) * N * sizeof(float),
cudaMemcpyDeviceToHost) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}