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Von Neumann Architectures

 Four basic hardware components

* Input devices

Output devices

¢ Main memory

Central processing unit (CPU)
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CPU

« CPU carries out the instructions of a computer program
* Arithmetic logic unit (ALU) performs arithmetic and logical
operations
« Control unit (CU) fetches instructions from main memory, decodes

them, and executes them

Uses the ALU to execute the instructions when necessary
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~ Stored Program Concept

« Conceptually, programs and data are very different
« But, we treat programs as data
* Both can be stored in main memory
« The program is easily replaced by another program for a different
task
* The program for a specific task is loaded into main memory (e.g., from
secondary storage), and instructions in the program are executed one
after another without any human intervention
* The hours of tedious labor required to reprogram computers can be
eliminated
* A modern computer can solve almost an infinite variety of problems

By just switching between different programs
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Processor, CPU, and Core

N

* Poorly defined terms in these days
« A processor or CPU typically refers to the physical chip (package)
« Core
* A hardware unit that fetches instructions and executes them
« Contains hardware components involved in executing instructions
* ALU, FPU, (private) L1/L2 caches, etc.
* Processor or CPU
* The combination of one or more cores with shared resources
between cores and some supporting hardware
« A processor sometimes refers to a processor that contains a single

core or the core itself depending on the context
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Uncore |

N

* Aterm used by Intel

« Hardware components that are not in the core

« QPI controllers, Last level caches (e.g., L3 cache), on-chip memory

controllers, etc.
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Techniques to Improve a Single Core

N

« As VLSI technology improves, more room becomes available on a

chip

 Two major techniques
* On-chip caches

* Instruction pipelines
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Dependences

N

« An ordering relationship between two computations
« Any ordering of execution that obeys all dependences will produce

the same result as that of the original program

« Data dependences

* Flow (true) dependence
* Anti dependence
* Qutput dependence

* Input dependence (not really a dependence)

« Control dependences
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Flow Dependence

e True dependence

* Instruction P writes a memory location that instruction Q later

reads (read after write)

P: a = ;
Q: = a;

DL
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Anti Dependence

 False dependence (can be removed)

* Instruction P reads a memory location that instruction Q later

writes (write after read)

P: = a;
Q: a = ...;

DL
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Output Dependence

 False dependence (can be removed)

* Instruction P writes a memory location that instruction Q later

writes (write after write)

P: a= .7
Q: a = ..;

DL
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Input Dependence

* Not really a dependence

e For caches

* Instruction P reads a memory location that instruction Q later

reads (read after read)

J
I

a,
Q: .. = a;

//cache hit for the access to a
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Control Dependences

* An instruction Q has a control dependence on a preceding instruction P if the outcome of
P determines whether Q should be executed or not
* Aninstruction Q is said to be control dependent on another statement P if and only if
«  There exists a path from P to Q such that every instruction | # P within the path will be
followed by Q in each possible path to the end of the program, and
« P will not necessarily be followed by Q, i.e. there is an execution path from P to the end of

the program that does not go through Q

P: 1f (x > 3)
Q: a = ..;
R: a = ..;

Sy
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Pipelined Processors

» Pipelining is a hardware technique that increases instruction throughput (e.g.,
the number of instructions executed in a CPU clock cycle)
 Typical five-stage pipeline
* |IF: instruction fetch
 ID: instruction decode and register fetch
« EX: execute

« MEM: memory access

* WAB: register write back

2 1 314 | 5 |

Rttt
—

Clock cycles
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Instruction Pipeline

* Assume
« Each instruction takes 3 cycles to complete

« Each pipeline stage takes a single cycle

instruction 1 instruction 2 instruction 3 instruction 4

ID | EX

Clq'ck cycles
4 5

10 11

12

-
N

6

instruction 1

instruction 2

instruction 3

instruction 4
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Pipeline Hazards

. )
« Occur when the next instruction does not execute in the following
clock cycle
 Data hazards
e Structural hazards
« Control hazards
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Data Hazards

« Occur when aresult is needed in the pipeline before it is available

addr1,r2,r3

addr4,r2,r1

subrs5, r3, r6

T ————————

xorr5,rl, r6
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Resolving Data Hazards

Stalling the pipeline
* A bubble represents a delay in execution of an instruction in the

pipeline to resolve a hazard

addr1,r2,r3

addr4,r2, r1

subrs, r3, ré6

xorr5,rl, ré
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Resolving Data Hazards (cont’d)

e Software

* Insert independent instructions (or no-ops)

addri,r2,r3

addri1,r2,r3 no-op
addr4,r2, r1 » no-op
subr5, r3,r6 addr4,r2, r1
xorr5,rl, r6 subr5,r3,r6

xorr5,r1, r6
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| Resolving Data Hazards (cont’d)

e Hardware

* Stalling the pipeline (i.e., insert bubbles)

 Transparent register file
» Resolves data hazard at the WB stage
* If the register file is asked to read and write the same register in the
same cycle, the register file allows the written data forwarded to the
stage in which the data is needed
First half cycle: the register is written with the data
Send half cycle: the register is read into the pipeline (in the ID stage)
 Data forwarding
« Feeding output data into a previous stage of the pipeline

* Resolves data hazard at the EX and MEM stages

S
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Structural Hazards

Occur when a part of the processor's hardware is needed by two or
more instructions at the same time

* Due to resource conflicts
* Asingle memory unit that is accessed both in the IF stage and the MEM
stage
» Resolving structural hazards
« Stalling the pipeline

]
Idrr1, r2(r3) IF . MEM WB

addr4,r2,r8

subr5,r3, r6

Xorr5, r7, r6

i
E
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Control Hazards

Occur because of branches
* The pipeline does not know the branch target until the instruction
reaches the MEM stage
* Assume PC is set in the MEM stage

* The pipeline continues fetching instructions sequentially
» These fetched instructions cannot be allowed to execute because the
programmer has diverted control

1 ] ]
Idr pc, r2(r3) IF : MEM WB

add rA4<12, r8

suB‘*(rG
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Resolving Control Hazards

N

e Software

* Delayed branch

* Perform instruction scheduling into branch delay slots with instructions

before the branch instructions
From the target address (when it is known to be taken)

From fall through (when it is known to be not-taken)

* Programs written for a pipelined processor deliberately avoid

branching to avoid performance degradation

S
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Resolving Control Hazards (cont’d)

« Hardware
« Stalling the pipeline until the branch target is known

* Branch predictors (complicated)

Idr pc, r2(r3) IF { ID - EX MEM WB

addr4,r2, r8

subr5, r3, ré
xorrS,r7,r6

add r7,r6, r3
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In-order Execution

* Steps
* Fetch and decode the next instruction
* |f its operands are available, the instruction is dispatched to the
appropriate functional unit
« Otherwise, the processor stalls until they are available

» The result is written back to register file

Integer addition

| D g g X | X | B
FP mutiply

load/store
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Out of Order Execution (Oo0O)

* Dynamic instruction scheduling by hardware
* Steps
» Fetch and decode the next instruction
* Issue it to the appropriate reservations station
* It waits in the reservation station until its operands are available
* The instruction is dispatched to the appropriate functional unit and executes
* The execution completes, and the result is queued in the reorder buffer in the commit unit

*  The commit unit write results to registers and memory in program fetch order

Resevation
station ' Integer addition

Resevation ! ! Reorder
station | ! FP mutiply buffer

Resevation
load/store
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Tomasulo’s Algorithm

IBM 360/91

Single issue

In-order issue

Out-of-order dispatch

QOut-of-order execution

In-order commit
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Issuing and Dispatching an Instruction

N J

* Once the instruction has passed the ID stage, we say that the

instruction is issued

* When all operands are available, we say that the instruction is

dispatched from a reservation station to the execution (functional)

unit
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Precise Exception (Interrupt)

* All instructions before the faulting instruction are committed and

those after it can be restarted from scratch

e If an interrupt occurred, all instructions that are in program order
before the interrupt signaling instruction are committed, and all

later instructions are removed

« Depending on the architecture and the type of exception, the
faulting instruction should be committed or removed without any

lasting effect
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Retirement (Graduation)

N

e An instruction retires when the reorder buffer slot of an instruction

is freed either
* because the instruction commits (the result is made permanent) or

* because the instruction is removed (without making permanent

changes)

S
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Superscalar Processors
N

* Dynamically issue multiple instructions in each clock cycle

* A typical superscalar processor fetches and decodes several

Instructions at a time

e In-order or out-of-order issue

« Exploit he potential of ILP(Instruction Level Parallelism)
* How many instructions can be executed simultaneously?

 Limited amount of ILP in an application
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VLIW Processors

N J

« Use a long instruction word that contains a fixed number of

instructions that are fetched, decoded, issued, and executed

synchronously

» Static instruction scheduling by a compiler

S
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