Lecture 05
= 0|2 O} 7| &=

41
Multicore Co

Spri

© Jg

0| 242!
Megchstn ZREE ot

http://aces.snu.ac.kr

THUNDER Research Group Sk
Seoul National U ‘\‘;’51 %
MetiEtn ds q:ll'a

70.414A
mputing
hg 2021
ejin Lee

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Von Neumann Architectures

 Four basic hardware components

* Input devices

Output devices

¢ Main memory

Central processing unit (CPU)

THUNDER Research Group @%;f“’;{o‘
Seoul National University g:' E Lecture 05 - &= 0|2t O} 7 |El %] 2
SV

Mecistm HE A7 b

<&

CPU

« CPU carries out the instructions of a computer program
* Arithmetic logic unit (ALU) performs arithmetic and logical
operations
« Control unit (CU) fetches instructions from main memory, decodes

them, and executes them

Uses the ALU to execute the instructions when necessary

00000000000000)
00000000000000
0000000000000
CO 0000000000
0000 C_—_—J00o8c

THUNDER Research Group f.ﬁ;f“’;{o‘
Seoul National University %E E‘V Lecture 05 - = 0|2t O} |EZ]
A)xé

Hgofstn 1 A7y

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

~ Stored Program Concept

« Conceptually, programs and data are very different
« But, we treat programs as data
* Both can be stored in main memory
« The program is easily replaced by another program for a different
task
* The program for a specific task is loaded into main memory (e.g., from
secondary storage), and instructions in the program are executed one
after another without any human intervention
* The hours of tedious labor required to reprogram computers can be
eliminated
* A modern computer can solve almost an infinite variety of problems

By just switching between different programs

THUNDER Research Group g.!ff“’;la’
Seoul National University M Lecture 05 - & 0|2+ Of7 &l 4
AgTHER #S 2P o

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Processor, CPU, and Core

N

* Poorly defined terms in these days
« A processor or CPU typically refers to the physical chip (package)
« Core
* A hardware unit that fetches instructions and executes them
« Contains hardware components involved in executing instructions
* ALU, FPU, (private) L1/L2 caches, etc.
* Processor or CPU
* The combination of one or more cores with shared resources
between cores and some supporting hardware
« A processor sometimes refers to a processor that contains a single

core or the core itself depending on the context

THUNDER Research Group %‘aga
Seoul National University . -
Merjstn HE oqa %.‘»@ Lecture 05 - %&Ol'ﬂ,_ OF7 |Ell A

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Uncore |

N

* Aterm used by Intel

« Hardware components that are not in the core

« QPI controllers, Last level caches (e.g., L3 cache), on-chip memory

controllers, etc.

THUNDER Research Group ;ﬁf*’;{a
Seoul National University -'% Lecture 05 - = 0|2t O}7 | &I %] 6
Mgterm us ey Y S

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Techniques to Improve a Single Core

N

« As VLSI technology improves, more room becomes available on a

chip

 Two major techniques
* On-chip caches

* Instruction pipelines

THUNDER Research Group 9{5‘*’;{0"
Seo:l Nf:tionf-!l University g‘% Lecture 05 - &= 0|2t O} 7 |El %] 7
Y e

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Dependences

N

« An ordering relationship between two computations
« Any ordering of execution that obeys all dependences will produce

the same result as that of the original program

« Data dependences

* Flow (true) dependence
* Anti dependence
* Qutput dependence

* Input dependence (not really a dependence)

« Control dependences

THUNDER Research Group 9{5‘*’;{0"
Se;)ul r;a:iona: Un::iilty %@%@ Lecture 05 - & 0| Qt O} 7 |El 8
Agchsta HE A7 '

D, cE

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Flow Dependence

e True dependence

* Instruction P writes a memory location that instruction Q later

reads (read after write)

P: a = ;
Q: = a;

DL

THUNDER Research Group 9{5‘*’;{0"
Se41:>ul I;a:iona{l Unci:'l:iilty g‘% Lecture 05 - &= 0|2t O} 7 |El %] 9
MEtiEtn HE A7 i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Anti Dependence

 False dependence (can be removed)

* Instruction P reads a memory location that instruction Q later

writes (write after read)

P: = a;
Q: a = ...;

DL

THUNDER Research Group 9{5‘*’;{0"
Se41:>ul I;a:iona{l Unci:'l:iilty g‘% Lecture 05 - &= 0|2t O} 7 |El %] 10
MEtiEtn HE A7 i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Output Dependence

 False dependence (can be removed)

* Instruction P writes a memory location that instruction Q later

writes (write after write)

P: a= .7
Q: a = ..;

DL

THUNDER Research Group 9{5‘*’;{0"
Se41:>ul I;a:iona{l Unci:'l:iilty g‘% Lecture 05 - &= 0|2t O} 7 |El %] 11
MEtiEtn HE A7 i

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Input Dependence

* Not really a dependence

e For caches

* Instruction P reads a memory location that instruction Q later

reads (read after read)

J
I

a,
Q: .. = a;

//cache hit for the access to a

THUNDER Research Group 4 A’;{%
enun s eny GEAY Lecture 05 - & =0|QF O |E4 3] 12
2Hete Hs HY SN,

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Control Dependences

* An instruction Q has a control dependence on a preceding instruction P if the outcome of
P determines whether Q should be executed or not
* Aninstruction Q is said to be control dependent on another statement P if and only if
« There exists a path from P to Q such that every instruction | # P within the path will be
followed by Q in each possible path to the end of the program, and
« P will not necessarily be followed by Q, i.e. there is an execution path from P to the end of

the program that does not go through Q

P: 1f (x > 3)
Q: a = ..;
R: a = ..;

Sy

THUNDER Research Group 4§ :{0"
Seoul National University %h%Eg Lecture 05 - &= 0|2t O}7 |Ell %] 13
DL

Mgthstm 3S 74

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Pipelined Processors

» Pipelining is a hardware technique that increases instruction throughput (e.g.,
the number of instructions executed in a CPU clock cycle)
 Typical five-stage pipeline
* |IF: instruction fetch
 ID: instruction decode and register fetch
« EX: execute

« MEM: memory access

* WAB: register write back

2 1 314 | 5 |

Rttt
—

Clock cycles

THUNDER Research Group 9{5"“;{0"
Se;)ul r;a:iona: Un::iilty %@%@ Lecture 05 - & 0|3k O}7 |Ell % 14
METHStR HE B4 '

S

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Instruction Pipeline

* Assume
« Each instruction takes 3 cycles to complete

« Each pipeline stage takes a single cycle

instruction 1 instruction 2 instruction 3 instruction 4

ID | EX

Clq'ck cycles
4 5

10 11

12

-
N

6

instruction 1

instruction 2

instruction 3

instruction 4

Seoul National University
METEta HS Ay

THUNDER Research Group 947§ '*;{03:
| %;%_ Lecture 05 - Z & 0|0F O} Bl 2] 15

W

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Pipeline Hazards

.)
« Occur when the next instruction does not execute in the following
clock cycle
 Data hazards
e Structural hazards
« Control hazards

THUNDER Research Group ;ﬁf*’;{a
Seoul National University -'% Lecture 05 - = 0|2t O}7 | &I %] 16
e RIEREYI - S

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Data Hazards

« Occur when aresult is needed in the pipeline before it is available

addr1,r2,r3

addr4,r2,r1

subrs5, r3, r6

T ————————

xorr5,rl, r6

THUNDER Research Group ?ﬁ-“ RN
Seoul Nation a||l=J iversity Lecture 05 - &= 0|2t O} 7 |El %] 17
METHsa HE A7 gLﬁ.Lj

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Resolving Data Hazards

Stalling the pipeline
* A bubble represents a delay in execution of an instruction in the

pipeline to resolve a hazard

addr1,r2,r3

addr4,r2, r1

subrs, r3, ré6

xorr5,rl, ré

~ THUNDER Research Group faﬁ;f“’;{b‘
Seoul National University %’h% Lecture 05 - = 0|2t O}7 | &I %] 18
NECTERETEVER" N

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Resolving Data Hazards (cont’d)

e Software

* Insert independent instructions (or no-ops)

addri,r2,r3

addri1,r2,r3 no-op
addr4,r2, r1 » no-op
subr5, r3,r6 addr4,r2, r1
xorr5,rl, r6 subr5,r3,r6

xorr5,r1, r6

_ THUNDER Research Group 7&“ RN
Seoul Nation a||l=J iversity Lecture 05 - &= 0|2t O} 7 |El %] 19
METHsa HE A7 gLﬂ.Lj

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

| Resolving Data Hazards (cont’d)

e Hardware

* Stalling the pipeline (i.e., insert bubbles)

 Transparent register file
» Resolves data hazard at the WB stage
* If the register file is asked to read and write the same register in the
same cycle, the register file allows the written data forwarded to the
stage in which the data is needed
First half cycle: the register is written with the data
Send half cycle: the register is read into the pipeline (in the ID stage)
 Data forwarding
« Feeding output data into a previous stage of the pipeline

* Resolves data hazard at the EX and MEM stages

S

THUNDER Research Group 9{5‘*’;{0"
Se41:>ul I;a:iona{l Unci:'l;[iilt:y g‘% Lecture 05 - &= 0|2t O} 7 |El %] 20
MEtiEtn HE A7 i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Structural Hazards

Occur when a part of the processor's hardware is needed by two or
more instructions at the same time

* Due to resource conflicts
* Asingle memory unit that is accessed both in the IF stage and the MEM
stage
» Resolving structural hazards
« Stalling the pipeline

]
Idrr1, r2(r3) IF . MEM WB

addr4,r2,r8

subr5,r3, r6

Xorr5, r7, r6

i
E

~ THUNDER Research Group faﬁ;f“’;{a
Seoul National University guh%E? Lecture 05 - &= 0|2t O} 7 |El %] 21
DL

Mghem HE ARy

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Control Hazards

Occur because of branches
* The pipeline does not know the branch target until the instruction
reaches the MEM stage
* Assume PC is set in the MEM stage

* The pipeline continues fetching instructions sequentially
» These fetched instructions cannot be allowed to execute because the
programmer has diverted control

1]]
Idr pc, r2(r3) IF : MEM WB

add rA4<12, r8

suB‘*(rG

THUNDER Research Group '\5’
Seoul National University E% Lecture 05 - % _L|:O|EL|' Of?l';‘”i—i 22

Mghem HE ARy

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Resolving Control Hazards

N

e Software

* Delayed branch

* Perform instruction scheduling into branch delay slots with instructions

before the branch instructions
From the target address (when it is known to be taken)

From fall through (when it is known to be not-taken)

* Programs written for a pipelined processor deliberately avoid

branching to avoid performance degradation

S

THUNDER Research Group 9{5‘*’;{0"
Se41:>ul I;a:iona{l Unci:'l;[iilt:y g‘% Lecture 05 - &= 0|2t O} 7 |El %] 23
MEtiEtn HE A7 i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Resolving Control Hazards (cont’d)

« Hardware
« Stalling the pipeline until the branch target is known

* Branch predictors (complicated)

Idr pc, r2(r3) IF { ID - EX MEM WB

addr4,r2, r8

subr5, r3, ré
xorrS,r7,r6

add r7,r6, r3

~ THUNDER Research Group faﬁ;f“’;{b‘
Seoul National University %’h% Lecture 05 - = 0|2t O}7 | &I %] 24
NECTERETEVER" N

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

In-order Execution

* Steps
* Fetch and decode the next instruction
* |f its operands are available, the instruction is dispatched to the
appropriate functional unit
« Otherwise, the processor stalls until they are available

» The result is written back to register file

Integer addition

| D g g X | X | B
FP mutiply

load/store

THUNDER Research Group ;ﬁj&?
Seoul National University J@%%} Lecture 05 - &= 0|2t O} 7 |El %] 25
VT

Mgtistn ds A7y U

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Out of Order Execution (Oo0O)

* Dynamic instruction scheduling by hardware
* Steps
» Fetch and decode the next instruction
* Issue it to the appropriate reservations station
* It waits in the reservation station until its operands are available
* The instruction is dispatched to the appropriate functional unit and executes
* The execution completes, and the result is queued in the reorder buffer in the commit unit

* The commit unit write results to registers and memory in program fetch order

Resevation
station ' Integer addition

Resevation ! ! Reorder
station | ! FP mutiply buffer

Resevation
load/store

THUNDER Research Group S4R1s

Seoul National University
Agtistn 4s A7y

Lecture 05 - & 0|2t O}7|El A 26

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Tomasulo’s Algorithm

IBM 360/91

Single issue

In-order issue

Out-of-order dispatch

QOut-of-order execution

In-order commit

THUNDER Research Group g&j‘%{?
Seoul National University B o O il
Merstm HE AP &@lﬁ Lecture 05 - & 0|2+ O}7 | &l %] 27

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Issuing and Dispatching an Instruction

N J

* Once the instruction has passed the ID stage, we say that the

instruction is issued

* When all operands are available, we say that the instruction is

dispatched from a reservation station to the execution (functional)

unit

THUNDER Research Group gé
Seoul National U % Lecture 05 - & 0|8t O} 7 |El A 28
e M

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Precise Exception (Interrupt)

* All instructions before the faulting instruction are committed and

those after it can be restarted from scratch

e If an interrupt occurred, all instructions that are in program order
before the interrupt signaling instruction are committed, and all

later instructions are removed

« Depending on the architecture and the type of exception, the
faulting instruction should be committed or removed without any

lasting effect

THUNDER Research Group gé
Seoul Natio % Lecture 05 - & 0|8t O} 7 |El A 29
et M

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Retirement (Graduation)

N

e An instruction retires when the reorder buffer slot of an instruction

is freed either
* because the instruction commits (the result is made permanent) or

* because the instruction is removed (without making permanent

changes)

S

THUNDER Research Group g.ﬁf“’;{a’
Si?ul ';a:ijlma: Un:;:iw %-'% Lecture 05 - & 0| Qt O} 7 |El 30
%L i.-lL ?_% [= i

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Superscalar Processors
N

* Dynamically issue multiple instructions in each clock cycle

* A typical superscalar processor fetches and decodes several

Instructions at a time

e In-order or out-of-order issue

« Exploit he potential of ILP(Instruction Level Parallelism)
* How many instructions can be executed simultaneously?

 Limited amount of ILP in an application

THUNDER Research Group 9{5‘*’;{0"
Seoul Nf:tion?l University g‘% Lecture 05 - &= 0|2t O} 7 |El %] 31
Y e

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

VLIW Processors

N J

« Use a long instruction word that contains a fixed number of

instructions that are fetched, decoded, issued, and executed

synchronously

» Static instruction scheduling by a compiler

S

THUNDER Research Group g.ﬁf“’;{a’
Si?ul ';a:ijlma: Un:;:iw %-'% Lecture 05 - & 0| Qt O} 7 |El 32
%L i.-lL ?_% [= i

