4190.414A
Multicore Computing
Spring 2021
© Jaejin Lee
Lecture 08
Caches
J

0| 242!
Megchstn ZREE ot

http://aces.snu.ac.kr

THUNDER Research Group Sk
Seoul National U ‘\‘;’51 %
MetiEtn ds q:ll'a

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

~ Principle of Locality

* The reuse of data or instructions that were recently used, or near
those that have been used recently
* Predictable behavior

« Temporal locality

* Recently referenced items are likely to be referenced in the near

future

» Within relatively small time durations

* Spatial locality

* Items in nearby locations tend to be referenced close together in
time

» Within relatively close locations and relatively small time durations

THUNDER Research Group g.!f_f“’;la
Seo:l Nf’t'°"f"£""'°ri',w ¢ % Lecture 08 - Caches
ME0stn S A LSz

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

\ For Data]

» Spatial locality

* Reference array elements (A[i]) in succession (stride = 1)

» Temporal locality

» Reference sum in each iteration

Lecture 08 - Caches

THUNDER Research Group §4£RT:¢
Seoul National University v .. Y
MECHstn HE d74 i

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

For Instructions

* Spatial locality

* Reference instructions in sequence

« Temporal locality

* Cycle through loop repeatedly

movl $0, -12(%ebp)
movl $0, -16(%ebp)
jmp L2

- . 4 movl -16 (%ebp), %eax
1 < 10; i++4) movl -56 (%ebp, $eax,4), %$edx
leal -12 (%ebp), %eax
addl %$edx, (%eax)
leal -16(%ebp), %eax
incl (%eax)

cmpl $9, -16(%ebp)
jle L3

A P &)
Seoul National University

Mgoistn ds gpy YAy

THUNDER Research Group 5\;&;’;" TR
Y % Lecture 08 - Caches

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Memory Hierarchies

N

 Hierarchical arrangement of storage
» To exploit locality of reference

 Fast storage technologies cost more per byte and have less capacity

* The gap between CPU and main memory speed is widening

m
Ahip L1 cache (SRAM)

On-chip L2 cache (SRAM) Lower latency
Higher bandwidth

Smaller size

On-chip L3 cache (SRAM)

/ Main memory (DRAM) \
/ Disk cache (NAND flash memory) \
/ Secondary storage (hard disks, solid state disks) \

THUNDER Research Group §4£RT:¢

Seoul National University
Agtistn 4s A7y

Lecture 08 - Caches

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Caching

Exploit temporal locality

* Remember the contents of recently accessed locations

Exploit spatial locality

* Remember the blocks of recently accessed locations

Cache block = cache line
« The basic unit for cache storage

* Multiple bytes or words

Need an item d, which is stored in some block b
« Cache hit
* Find block b in the cache at level k
« Cache miss

* Block b is not in the cache at level k

* The cache at level k must fetch b from level k+1

If the cache at level k is full, then some block in the cache must be replaced

THUNDER Research Group ;ﬁf’"ﬁlﬁ'
Seoul Nf:tion?l University %:'% Lecture 08 - Caches
AETHEn B Al ol

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

~ L1 Cache between CPU and Main Memory

)
Main Memory
divided into many w-word data blocks
CPU L1 Cache .
. : many w-word cache lines
register file I
1 ~ 16 bytes a data block .
(8 ~ 512 bytes) .

cache line = data block

THUNDER Research Group £ ’;{0"
Seoul National University M Lecture 08 - Caches
‘ L

Mghem HE ARy

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Cache Organizations in General

« Cache size = Lx5xB bytes

« Asetis a collection of cache locations in which a given block may

Valid Tag Data

be placed (1 bit) (t bits) (B bytes)
Set0
Set 1
S
L lines SetS -1

Lecture 08 - Caches

THUNDER Research Group §4£RT:¢
Seou Nationa) niverstty Y B ¥
MECHetn HE HJA X TAS | MEA

4190.414A
Multicore Computing

Spring 2021
. . © Jagjin Lee
Locating Data in the Cache
\)
« The word at the requested address is in the cache if the tag bits in one of the
valid lines in the specified set match the tag bits in the address
« The set index is specified by the set index filed of the address
« The location of the word in the block is specified by the offset field in the
address Audees (Yarili?) (tT;‘?s) (B?)?/ttzs)
Tag Setindex Offset <t < I
| (t bits) |,(S bits)\I (b bits) .
01...01 | 00..01 [000100 | Set 0
Y
1 |01...01
> : Set 1
| TIITIIT]] - |
S=2s .
B=2° v '
L lines E SetS-1
1 AR - |

Lecture 08 - Caches

THUNDER Research Group S£RT,S
Seoul National University v .. Y
Maristn HE A7 et

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

~ Direct-Mapped Caches

* One cache line per set
e Simplest
« Data block can be only in one place in the cache

* Replacement is straightforward

e Collisions between data blocks for the same cache line can occur

Valid Tag Data

(1 bit) (t bits) (B bytes)

fe—t< f= {
Set0
Set 1
Set 2
SetS-1

Lecture 08 - Caches

THUNDER Research Group §4£RT:¢
Seoul National University v .. Y
MECHstn HE d74 i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

- Addressing Direct-Mapped Caches

* Find a valid line in the selected set with a matching tag
* |f there is one such line, extract the word with the offset field
« Otherwise, fetch the line from the lower level memory, place it in

the selected set, and update the valid bit

. Valid Tag Data
Tag Setindex Offset : .
(tbits) _ (s bits) , (b bits) (}1 b”l) (t bits) : (B bytes) :
| | I 1
[01..01 | 00...10 (000100 | Set 0
=t : g Set 1
lecccheccccas ? ™) ? @ T Set2
L | [T TTT Ty fsets-1
word

THUNDER Research Group ;ﬁé‘"ﬁlﬁ'
Seoul meon?l University A % Lecture 08 - Caches
Merjstn g A7d o

Addressing Direct-Mapped Caches (cont’d)

* Lower level memory size = 64 bytes

* B =8bytes/block, S =4sets, L =1 line/set

* Address size = 6 bits
0 (0000002)

Tag Setindex Offset
} (1 bit) \%,(2 bits) (3 bits)}{

L

5 0
0 (000000,)
8 (001000,)
16 (010000,
24 (011000,)
32 (100000,)
40 (101000,)
48 (110000,)
56 (111000,)

Valid Tag Data
(1 bit) (1 bit) (8 bytes)
f=—= I

0]

0]

0]

0]

4190.414A

Multicore Computing

Set0
Set 1
Set 2
Set 3

Spring 2021
© Jagjin Lee

&

THUNDER Research Group)

Seoul National University
Mgohetn 35 e

Lecture 08 - Caches

Addressing Direct-Mapped Caches (cont’d)

* Lower level memory size = 64 bytes
* B =8bytes/block, S =4sets, L =1 line/set

* Address size = 6 bits

0 (0000002)

Tag Setindex Offset
} (1 bit) \%,(2 bits) (3 bits)}{

L

° 0 valid Tag Data
0 (000000,,) (1bit) (1bit) (8 bytes)

Yy

8 (001000,) — :

16 (010000, 0

24 (011000,)

O|O|Oo|—=

32 (100000,)

40 (101000,)
48 (110000,)
56 (111000,)

4190.414A

Multicore Computing

Set0
Set 1
Set 2
Set 3

Spring 2021
© Jagjin Lee

Lecture 08 - Caches

THUNDER Research Group §4£RT:¢
Seoul National University Y [pe.
Hgofstn 15 A7y i

Addressing Direct-Mapped Caches (cont’d)

* Lower level memory size = 64 bytes

* B =8bytes/block, S =4sets, L =1 line/set

* Address size = 6 bits

0 (0000002)

Tag Setindex Offset
} (1 bit) \%,(2 bits) (3 bits)}{

L

5 0
0 (000000,)
8 (001000,)
16 (010000,
24 (011000,)
32 (100000,)
40 (101000,)
48 (110000,)
56 (111000,)

4 (0001002)

Valid Tag Data
(1 bit) (1 bit) (8 bytes)
le—t< =< =
1 0
0
o
0

4190.414A

Multicore Computing

Set0
Set 1
Set 2
Set 3

Spring 2021
© Jagjin Lee

&

THUNDER Research Group §4£RT:¢
s' \/ (B 'x Y,

Seoul National University
Hgofstn 1 A7y

Lecture 08 - Caches

Addressing Direct-Mapped Caches (cont’d)

* Lower level memory size = 64 bytes

* B =8bytes/block, S =4sets, L =1 line/set

* Address size = 6 bits

0 (0000002)

Tag Setindex Offset
} (1 bit) \%,(2 bits) (3 bits)}{

L

5 0
0 (000000,)
8 (001000,)
16 (010000,
24 (011000,)
32 (100000,)
40 (101000,)
48 (110000,)
56 (111000,)

4 (0001002)

20 (0101002)

Valid Tag
(1 bit) (1 bit)
| | |

Data
(8 bytes)

I =1 I

0

O |O|O|—=

4190.414A

Multicore Computing

Set0
Set 1
Set 2
Set 3

Spring 2021
© Jagjin Lee

&

THUNDER Research Group §4£RT:¢
s' \/ (B 'x Y,

Seoul National University
Hgofstn 1 A7y

Lecture 08 - Caches

Addressing Direct-Mapped Caches (cont’d)

* Lower level memory size = 64 bytes

* B =8bytes/block, S =4sets, L =1 line/set

* Address size = 6 bits

0 (0000002
Tag Setindex Offset

~(1bit) (2 bits

4 (0001002) 20 (0101002)

5

0 (000000,)

8 (001000,)
16 (010000,
24 (011000,)
32 (100000,)
40 (101000,)
48 (110000,)
56 (111000,)

) , (3bits)
0 Valid Tag Data

(1 bit) (1 bit) (8 bytes)

=—= =} >
1 0
0
1o ”
0

4190.414A

Multicore Computing

Set0
Set 1
Set 2
Set 3

Spring 2021
© Jaejin Lee

P

THUNDER Research Group)

Seoul National University
Mgohetn 35 e

Lecture 08 - Caches

Addressing Direct-Mapped Caches (cont’d)

* Lower level memory size = 64 bytes

* B =8bytes/block, S =4sets, L =1 line/set

* Address size = 6 bits

0 (0000002) 4 (0001002)

Tag Setindex Offset
} (1 bit) ‘%’(2 bits)\{ (3 bits)}{

5 0

0 (000000,)
8 (001000,)
16 (010000,
24 (011000,)
32 (100000,)

40 (101000,) | 1 |

48 (110000,)

56 (111000,) | | | |

20 (0101002) 48 (1100002)

Valid Tag Data
(1 bit) (1 bit) (8 bytes)
=—= } I
1 0
0
[o H
0

Set0
Set 1
Set 2
Set 3

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

THUNDER Research Group §4£RT:¢
Seoul National University Y [pe.
Nerista Hs apa SRS

Lecture 08 - Caches

Addressing Direct-Mapped Caches (cont’d)

* Lower level memory size = 64 bytes

* B =8bytes/block, S =4sets, L =1 line/set

* Address size = 6 bits

0 (0000002) 4 (0001002)

Tag Setindex Offset
} (1 bit) ‘%’(2 bits)\{ (3 bits)}{

5 0

0 (000000,)
8 (001000,)
16 (010000,
24 (011000,)
32 (100000,)

40 (101000,) | 1 |

48 (110000,)

56 (111000,) | | | |

20 (0101002) 48 (1100002)

Valid Tag Data

(1 bit) (1 bit) (8 bytes)

=—= } I
1 0
0
T
0

Set0
Set 1
Set 2
Set 3

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

THUNDER Research Group §4£RT:¢
Seoul National University Y [pe.
Nerista Hs apa SRS

Lecture 08 - Caches

Addressing Direct-Mapped Caches (cont’d)

* Lower level memory size = 64 bytes

* B =8bytes/block, S =4sets, L =1 line/set

* Address size = 6 bits

0 (0000002) 4 (0001002)

Tag Setindex Offset
} (1 bit) \%,(2 bits)\{ (3 bits)}{

5 0

0 (000000,)

8 (001000,)

16 (010000,
24 (011000,)
32 (100000,)
40 (101000,)
48 (110000,)
56 (111000,)

4190.414A

Multicore Computing

Spring 2021
© Jagjin Lee

20 (0101002) 48 (1100002) 36 (1001002)

Valid Tag Data

(1 bit) (1 bit) (8 bytes)

=—=1 } I
1 0]
0]
T
0]

Set0
Set 1
Set 2
Set 3

THUNDER Research Group S4RT:¢
Seoul National University Y [pe.
Mgrista ¥ day s

Lecture 08 - Caches

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Addressing Direct-Mapped Caches (cont’d)

* Lower level memory size = 64 bytes

* B =8bytes/block, S =4sets, L =1 line/set

* Address size = 6 bits

0 (0000002) 4 (0001002) 20 (0101002) 48 (1100002) 36 (1001002)

Tag Setindex Offset
}(1mhg2mqﬂ@mmg

° 0 valid Tag Data

0 (000000,) (1bit) (1bi) (8bytes)
8 (001000,) | 1" : ! i .
16 (010000,,)

0 Set 1
24 (011000,

1 1 Set 2
32 (100000,) -
40 (101000,) | | | | 0 e
48 (110000,

56 (111000,) | | | |

THUNDER Research Group §4£RT:¢
Seoul National University Y [pe.
Nerista Hs apa SRS

Lecture 08 - Caches

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Set Associative Caches

» Data block can be in a few places in the cache

* Need a good replacement policy
* Less collisions between data blocks for the same cache line than the direct-mapped cache

» Complex tag comparison hardware on the lines in a set

Valid Tag Data
(1 bit) (t bits) (B bytes)
| e .

Y

Set0

Set 1

T . 1T

L lines SetS-1

T . [T

THUNDER Research Group 4k

Seoul National University
Agtistn 4s A7y

Lecture 08 - Caches

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Addressing Set Associative Caches

&)

* Find a valid line in the selected set with a matching tag
e If there is one such line, extract the word with the offset field
« Otherwise, fetch the line from the lower level memory, place it in the selected set by deciding which

line should be used, and update the valid bit

* Need a sophisticated replacement policy

Valid Tag Data Valid Tag Data
(1 bit) (t bits) (B bytes) (1 bit) (t bits) (B bytes)
Set0
Set 1
|m—————— Set 2
]
] . .
: . .
| L] HERRRERN RRERRRRENAD LTI I TT T] sets-1
: {
L (—
]
H
]
+

[01..01 | 00...10 | 000100 |
n-1 0

!
I

|l !

T T
Tag Setindex Offset
(tbits) (s bits) (b bits)

XY

THUNDER Research Group J4§7¢
Seoul National University . Lecture 08 - Caches
AETHEn B Al o

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Fully Associative Caches

N

* Only one set

» Data block can be any place in the cache

e Less collisions between data blocks for the same cache line than the set

associative cache
« Complex tag comparison hardware on the lines in the cache

Valid Tag Data
(1 bit) (t bits) (B bytes)
fe—t< i i

y

L lines Set

THUNDER Research Group §4£RT:¢

Seoul National University
Agtistn 4s A7y

Lecture 08 - Caches

- Addressing Fully Associative Caches

* Find a valid line with a matching tag
e If there is one such line, extract the word with the offset field
« Otherwise, fetch the line from the lower level memory, place it in the cache by deciding which line

should be used, and update the valid bit

* Need a sophisticated replacement policy

Valid Tag Data
(11 bi? (t bits)\} (B bytes) }
I,HHHHIHIIH!
:% 1 — hit
>/
g LI1T] [
é N »
> = N I/(word
>
| o [[ITITTg[TlII]] |
[
:% 2§

:

| o01.01 [ooo100|
n-1 0
I 1 |

Tag I Offset l
(t bits) (b bits)

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

THUNDER Research Group £k ’;{0‘
Seoul National University M Lecture 08 - Caches
‘ L

Mghem HE ARy

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

~ Types of Cache Misses

« Cold (compulsory) miss
* When the cache is empty
« Conlflict miss
* When the cache is large enough, but multiple data items map to the
same cache line
« Capacity miss
« When the set of active cache lines (working set) is larger than the
cache

» Working set

* The set of referenced blocks that are active during a given period of time

THUNDER Research Group g.!f_f“’;la
Seo:l N?tlon?lgnlverirlty @%@ Lecture 08 - Caches
Merjstn g A7d o

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Replacement Policies

 After a miss, what cache block should be replaced with the block

read from memory?
* Which way in a multiway (i.e., set associative or fully associative)
cache should be replaced?
* ldeally, any cached data which is no longer needed would be chosen

to be replaced

* LRU (Least Recently Used)
* Pseudo LRU
 FIFO (First In, First Out)

 Select a block that has been in the set for the longest time

e Random

THUNDER Research Group gé
Seoul Natio % Lecture 08 - Caches
et

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

| Least Recently Used (LRU)

» Select a block that has not been used for the longest time

* Need to maintain LRU statistics for each cache line in a set
+ 2-way set associative cache: 1 bit to encode 2 states in a set
* 4-way set associative cache: 5 bits to encode 4! = 24 states in a set

+ 8-way set associative cache: 16 bits to encode 8! = 40320 states in a set

* A time consuming read/modify/write cycle is needed to maintain the set state
on a cache access
» Too costly

* Instead, use pseudo LRU

m
—_

THUNDER Research Group ;ﬁé‘"ﬁlﬁ'
Seoul National University J@%%} Lecture 08 - Caches
el

Mgtistn ds A7y U

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

| Least Recently Used (cont’d)

» Select a block that has not been used for the longest time

* Need to maintain LRU statistics for each cache line in a set
+ 2-way set associative cache: 1 bit to encode 2 states in a set
* 4-way set associative cache: 5 bits to encode 4! = 24 states in a set

+ 8-way set associative cache: 16 bits to encode 8! = 40320 states in a set

* A time consuming read/modify/write cycle is needed to maintain the set state

on a cache access
» Too costly

* Instead, use pseudo LRU

. A

m
—_

THUNDER Research Group ;ﬁé‘"ﬁlﬁ'
Seoul National University J@%%} Lecture 08 - Caches
el

Mgtistn ds A7y U

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

| Least Recently Used (cont’d)

» Select a block that has not been used for the longest time

* Need to maintain LRU statistics for each cache line in a set
+ 2-way set associative cache: 1 bit to encode 2 states in a set
+ 4-way set associative cache: 5 bits to encode 4! = 24 states in a set

+ 8-way set associative cache: 16 bits to encode 8! = 40320 states in a set

* A time consuming read/modify/write cycle is needed to maintain the set state

on a cache access
» Too costly

* Instead, use pseudo LRU

... AB

m
—_

THUNDER Research Group :&éﬁ“’;{o"
Lecture 08 - Caches

Seoul National University »

Mgoistn ds gpy YA

4190.414A
Multicore Computing

Spring 2021
© Jagjin Lee
Pseudo LRU
J
* A binary decision tree ccoss | noxt state
« 2-way set associative cache: 1 bit A 11
* 4-way set associative cache: (23 —1) — 4 = 3 bits B 10_
- N-way set associative cache: (21082N+1 — 1) — N bits C 0 1_
« The difference between pseudo LRU and true LRU is statistically small D 00
» Each bit represents the left or right child in the binary decision tree
, , , state replace
* 1:the left side has been referenced more recently than the right side
: 00X A
* 0:vice versa
. : : 01X B
* A write cycle to update the pseudo-LRU bits on a hit 0 c
* Aread cycle for the pseudo-LRU bits during a line replacement o S
] AB/CD| A/B | C/D
0 1 0
A
B
C
D
THUNDER Research Group G338
Si;’;[';;:;";%u"g;zy F gjé%_i} Lecture 08 - Caches

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Pseudo LRU (cont’d)

N J
* A binary decision tree
access | next state
* 2-way set associative cache: 1 bit
« 4-way set associative cache: (23 — 1) — 4 = 3 bits A 11
- N-way set associative cache: (21082¥+1 _ 1) — N bits B 10_
« The difference between pseudo LRU and true LRU is statistically small C 0_1
» Each bit represents the left or right child in the binary decision tree D 0_0
« 1:the left side has been referenced more recently than the right side
state replace
* 0:vice versa
: : . 00X A
* A write cycle to update the pseudo-LRU bits on a hit
. . : 01X B
* Avread cycle for the pseudo-LRU bits during a line replacement
1X0 C
1X1 D

AB/CD| A/B C/D

(o I T v v B

THUNDER Research Group ;ﬁé‘"ﬁlﬁ'
Seoul National University gﬁ@%%} Lecture 08 - Caches
el

Mghem HE ARy

4190.414A
Multicore Computing

Spring 2021
© Jagjin Lee
I
Pseudo LRU (cont’d)
J
* A binary decision tree ccoss | noxt state
« 2-way set associative cache: 1 bit A 11
* 4-way set associative cache: (23 —1) — 4 = 3 bits B 10_
- N-way set associative cache: (21082N+1 — 1) — N bits C 0 1_
« The difference between pseudo LRU and true LRU is statistically small D 00
» Each bit represents the left or right child in the binary decision tree
, , , state replace
* 1:the left side has been referenced more recently than the right side
00X A
* 0:vice versa
. : : 01X B
* A write cycle to update the pseudo-LRU bits on a hit 0 c
* Aread cycle for the pseudo-LRU bits during a line replacement o S
AB/CD| A/B C/D
1 1 0
A
B
C
D
THUNDER Research Group G338
Si?;'!;;fﬁ"; _;ng:zy P gjé%_ﬁ, Lecture 08 - Caches

4190.414A
Multicore Computing

Spring 2021
© Jagjin Lee
I
Pseudo LRU (cont’d)
J
* A binary decision tree ccoss | noxt state
« 2-way set associative cache: 1 bit A 11
* 4-way set associative cache: (23 —1) — 4 = 3 bits B 10_
« N-way set associative cache: (2'092"’+1 — 1) — N bits C 0 1_
« The difference between pseudo LRU and true LRU is statistically small D 0.0
» Each bit represents the left or right child in the binary decision tree
. . . state replace
* 1:the left side has been referenced more recently than the right side 50X X
* 0:vice versa
, _ , 01X B
* A write cycle to update the pseudo-LRU bits on a hit X0 c
* Aread cycle for the pseudo-LRU bits during a line replacement e 5
T AB/CD| A/B | C/D
1 1 0
A
B
C
D
THUNDER Research Group G338
Si:;’;;:;";g"g;zy ’ gjé%_i} Lecture 08 - Caches

4190.414A
Multicore Computing

Spring 2021
© Jagjin Lee
I
Pseudo LRU (cont’d)
J
* A binary decision tree ccoss | noxt state
« 2-way set associative cache: 1 bit A 11
* 4-way set associative cache: (23 —1) — 4 = 3 bits B 10_
« N-way set associative cache: (2'092"’+1 — 1) — N bits C 0 1_
« The difference between pseudo LRU and true LRU is statistically small D 0.0
» Each bit represents the left or right child in the binary decision tree
. . . state replace
* 1:the left side has been referenced more recently than the right side 50X X
* 0:vice versa
, _ , 01X B
* A write cycle to update the pseudo-LRU bits on a hit X0 c
* Aread cycle for the pseudo-LRU bits during a line replacement e 5
T AB/CD| A/B | C/D
0 1 1
A
B
C
D
THUNDER Research Group G338
Si:;’;;:;";g"g;zy ’ gjé%_i} Lecture 08 - Caches

Write Policies

N

» Forreads, the block can be read at the same time that the tag is

compared

« For writes, modifying the block cannot begin until the tag is

* If a miss, just ignore the value read

compared

* Only some part of the entire block is modified

write

miss

write

through

write

back

write
allocate

no write
allocate

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

&

THUNDER Research Group
Seoul National University
MahEn HE a7

B3l

Lecture 08 - Caches

Write Policies When a Hit

4190.414A

Multicore Computing

Write through

Write back

Both the block in the cache and the block
in the lower level memory are modified

Only the block in the cache is modified
= The block is written back to the lower
level memory when it is replaced
= Adirty bit is used to reduce the
frequency of writing back blocks on
replacement

Simpler to implement

Writes are slower than reads

The lower level memory is always
consistent with the cache

Every write requires the lower level memory
access (need more memory bandwidth)
Read misses never result in writes to the
lower level memory

Harder to implement

Writes and reads are preformed at the
same speed

The lower level memory is not always
consistent with the cache

Multiple writes within a block require only
one write to the lower level memory (need
less memory bandwidth)

Read misses may cause writes of dirty
blocks to the lower level memory due to
replacement

Spring 2021
© Jaejin Lee

Seoul National University
METEta HS Ay

THUNDER Research Group @ﬁ;ﬁ%@
Yy

Dyl

Lecture 08 - Caches

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Write Policies when a Miss

 Write allocate
 The block is loaded into the cache on a write miss

« No write allocate

« The block is modified in the lower level memory and not loaded into the cache

Write through and write allocate Write back and write allocate
Subsequent writes to the same block will On a miss it updates the block in the lower
generate a write to the lower level memory level memory and brings the block to the
anyway cache
Bringing the block in the cache is a waste of|* Subsequent writes to the same block will hit
time in the cache

Write through and no write allocate Write back and no write allocate
Not bringing the block in the cache on a Subsequent writes to the same block will
miss saves time generate misses

THUNDER Research Group ?;é;;’"-‘o:‘}

Seoul National University

M
atione ¥ Y Lecture 08 - Caches
Meristn s Aa bl

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

~ Non-Blocking/Lockup-Free Caches

* Most caches can handle only one outstanding request at a time
« On a miss, the cache must wait for the lower level memory to supply
the requested data and until then it is blocked
* A non-blocking cache continues to supply cache hits during a miss

« Reduce effective miss penalty

« Another option: supporting multiple outstanding misses

A special state need to be maintained for each outstanding miss

Miss Status/Information Holding Registers (MSHRs)

THUNDER Research Group g.!f_f“’;la
Seo:l N?tlon?lgnlverirlty @%@ Lecture 08 - Caches
Merjstn g A7d o

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Cache Performance Metrics

N

 Miss Rate

* Fraction of memory references not found in the cache
(misses/references)
* Hit Time
* Time to deliver a line in the cache to the processor (includes time to
determine whether the line is in the cache)

* Miss Penalty

« Additional time required due to the miss

THUNDER Research Group g.!f_f“’;la
Seo:l N?tlon?lgnlverirlty @%@ Lecture 08 - Caches
Merjstn g A7d o

