Samsung DS
System Architeqt/Expert
© hcinLoe
Lecture 20
GPU Memory Hierarchy
J

0| Afi 2|
M SCHEHI CO|E{AFO] o1 A LHEHE
MSUstm Zaichst 2 EE 25

http://aces.snu.ac.kr/~jlee

THUNDER Research Group YR
Seoul National U ‘\‘;’51 %
Mgttt g A7y Yy

Samsung DS
System Architect/Expert
2022

© Jaejin Lee

An SM in NVIDIA Fermi Architecture

« Each SM supports concurrent
execution of hundreds of threads

« Multiple SMs per GPU

* Thousands of threads executing
concurrently on a single GPU

* Multiple thread blocks may be

assigned to the same SM at once
* Scheduled based on the availability of

SM resources

THUNDER Research Group $4RT:¢
Seoul National University Y [pe.
Nerista Hs apa SRS

Lecture 20 - GPU Memory Hierarchy 2

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

SIMT

NVIDIA terminology

Single Instruction Multiple Thread (SIMT) architecture

« To manage and execute threads in groups of 32 called warps

All threads in a warp execute the same instruction at the same

time

Each SM partitions the assigned thread blocks into warps
* The SM schedules the warps for execution on available hardware
resources

« All threads in a thread block run logically in parallel
* Not all threads can execute physically at the same time

« Different threads in a thread block may make progress at a different pace

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 20 - GPU Memory Hierarchy 3
METfsta HE @Ry

S

Samsung DS
System Architect/Expert
2022

Thread Block Scheduling

A thread block is scheduled on only one SM

* The block remains there until execution completes

An SM can hold more than one thread block at the same time

Shared memory is partitioned among thread blocks resident on

the SM

Registers are partitioned among threads

THUNDER Research Group ;g,é“ 32D
Seoul Natio I.: ﬁ%& Lecture 20 - GPU Memory Hierarchy 4
Metsta 35 ul;la —

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Thread Block Scheduling (cont’d)

N J

« Sharing data among parallel threads may cause a race condition
« Multiple threads accessing the same data with an undefined ordering,
which results in unpredictable program behavior
« CUDA provides a means to synchronize threads within a thread block

* No primitives are provided for inter-block synchronization

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 20 - GPU Memory Hierarchy 5
METfsta HE @Ry ‘

S

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Warp Scheduling

« Warps within a thread block may be scheduled in any order

* The number of active warps is limited by SM resources

* When a warp idles for any reason (e.g., waiting for values to be
read from device memory), the SM is free to schedule another
available warp from any thread block that is resident on the same

SM

 Switching between concurrent warps has no overhead

* Hardware resources are partitioned among all threads and blocks on

an SM

THUNDER Research Group g.!f_f“’;@
Seoul National University -~ ¢4 % Lecture 20 - GPU Memory Hierarchy 6
AETHEra HE A7 L

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Warp Scheduling (cont’d)

« Each SM features two warp schedulers and two instruction dispatch units
* When a thread block is assigned to an SM, all threads in a thread block are divided
into warps
* The two warp schedulers select two warps and issue one instruction from each warp to a
group of 16 CUDA cores, 16 load/store units, or 4 special function units
* The Fermi architecture, compute capability 2.x, can simultaneously handle 48

warps per SM for a total of 1,536 threads resident in a single SM at a time

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit Instruction Dispatch Unit

Warp 8 instruction 11 Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 95 Warp 15 instruction 95

time

Warp 8 instruction 12 Warp 9 instruction 12

Warp 14 instruction 96 Warp 3 instruction 34

Warp 2 instruction 43 Warp 15 instruction 96

THUNDER Research Group £k

Seoul National University
Agtistn 4s A7y

Lecture 20 - GPU Memory Hierarchy 7

Samsung DS

System Architect/Expert
2022
© Jaejin Lee
CUDA Memory Hierarchy
Grid
Col
Block (0, 0) Block (1, 0) Control ||l cmml____ m— |
Sp [5P | [LD/ST Sp [S | [LD/ST] Sp [sp | [LD/ST
Sp [sp | [LD/ST] | o, SP [SP | [LD/ST | g S [sp | [LD/ST] | opy
Sp | Sp | [LD/ST Sp | Sp | [LD/ST | Sp | Sp | [LD/ST
SP | SP | [LD/ST SP | SP | [LD/ST | SP | SP | [LD/ST
SP [5P | [LD/ST SP | SP | [LD/ST | SP | Sp | [LD/ST
Sp[Sp | [LD/ST] | o Sp[Sp | [LD/ST]| | o Sp 5P| [LD/ST]| | o
F SP | SP | [LD/ST SP | SP | [LD/ST | SP | SP | [LD/ST
| SP | SP | |LD/ST | SP [P | [LD/ST | | SP [P | [LD/ST |
Context | o5 T'6p| [LD/ST| Context | "epT"sp | [LD/ST| Context | "opT"sp | [LD/ST |
ISP [SP | [LD/ST | | op, ISP [SP | [LD/ST | | op, e |SP[SP| [LD/ST| | oy
Thread (0,0) ~ Thread (1,0) Thread (0,0) Thread (1, 0) SP | SP | [LD/ST SP | SP | [LD/ST | Sp [Sp | [LD/ST
[SP [SP | [LD/ST | | SP [SP | [LD/ST | SP | Sp | | LD/ST |
V'Y . SP | SP | [LD/ST | SP | SP | | LD/ST | SP | SP | [LD/ST |
[SP 'SP | [LD/ST | gpy [sp [P | [LD/ST] | gry [P [Sp | [LD/ST] | gry
SP [Sp | [LD/ST SP [SP | [LD/ST | SP [Sp | | LD/ST
SP | SP | [LD/ST SP [SP | [LD/ST SP | SP | [LD/ST
SM L1 cache/Shared memory SM L1 cache/Shared memory SM L1 cache/Shared memory

| Global memory |

7 -

Global memory Read/write slow, but cached

Texture memory read only cache optimized for 2D/3D access pattern

Constant memory read only where constants and kernel arguments are stored

Shared memory read/write fast

Local memory read/write used when it does not fit in to registers, just a part of global memory,

slow but cached

Registers read/write fast

_ THUNDER Research Group 9&4;_5“‘;:5’
NEae 55 474 g’gm% Lecture 20 - GPU Memory Hierarchy 8
S

Mghem HE ARy

Samsung DS

System Amzjw%%g
Access Speed o
intv register thread thread
int v[10] local thread thread
__shared__intv shared block block
__device__intv global grid application
__constant__intv constant grid application

Seoul National University
METEta HS Ay

THUNDER Research Group 4 *:{03:
A % Lecture 20 - GPU Memory Hierarchy 9

W

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

~ Shared Memory

* On-chip
» User-managed data caches (scratchpad memory)
* Much faster than local and global memory
« Shared memory latency is roughly 100x lower than uncached global
memory latency
* Threads can access data in shared memory loaded from global

memory by other threads within the same thread block

* Memory access can be controlled by thread synchronization to

avoid race condition

* __syncthreads()

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 20 - GPU Memory Hierarchy 10
METfsta HE @Ry ‘

S

Barrier

__syncthreads ()

in CUDA
* Ablock level synchronization barrier
« Ensures all threads have completed before continue

Barrier7} = [0 =&t A E= S Sthotl O

=2 o

Hi2|0{of| EEt517 |2 7|Ctal 2 AlSHE AHla st

22 (I E)S SAI|

DEAYETE

Samsung DS

System Architect/Expert
2022

© Jaejin Lee

ro

work on my problem() ;

Barrier () ;

get _result from others();

Barrier () ;

THUNDER Research Group :‘;.‘_ R

Seoul National University
METEta HS Ay

Lecture 20 - GPU Memory Hierarchy

if (my id == 0)

work () ;

barrier () ;
} else {

barrier () ;

{

11

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

CUDA Memory Consistency Model

« CUDA adopts a relaxed memory consistency model to enable

more aggressive compiler optimizations

 To explicitly force a certain ordering for program correctness,
memory fences and barriers must be inserted
* The only way to guarantee the correct behavior of a kernel
« Barriers

* void _ syncthreads()

THUNDER Research Group g.!f_f“’;@
Seoul National University -~ ¢4 % Lecture 20 - GPU Memory Hierarchy 12
AETHEra HE A7 L

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

- CUDA Memory Consistency Model (cont'd)

« Memory fences
 Ensure that any memory write before the fence is visible to other
threads after the fence

« Do not perform any thread synchronization

* Itis not necessary for all threads in a block to actually execute the fence
* There are three variants of memory fences depending on the desired

scope: block, grid, or system

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 20 - GPU Memory Hierarchy 13
METfsta HE @Ry ‘

S

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

CUDA Memory Consistency Model (cont’d)

* void _ threadfence block() ;

* Ensures that all writes to shared memory and global memory made
by a calling thread before the fence are visible to other threads in the
same block after the fence

* void _ threadfence();
« Stalls the calling thread until all of its writes to global memory are

visible to all threads in the same grid

* void = threadfence system();
» Stalls the calling thread to ensure all its writes to global memory,
page-locked host memory, and the memory of other devices are

visible to all threads in all devices and host threads

THUNDER Research Group ;g,é“ TR
Si:”'t'; :—. := q? @%E% Lecture 20 - GPU Memory Hierarchy 14
SCetn ds =

DL

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Using Shared Memory

* On devices of compute capability 2.x and 3.x, each SM has 64KB
of on-chip memory
« Can be partitioned between L1 cache and shared memory
 For devices of compute capability 2.x, there are two settings:
« 48KB shared memory and 16KB L1 cache, (default)
* 16KB shared memory and 48KB L1 cache

« Can be configured at runtime
« API from the host for all kernels using

cudaDeviceSetCacheConfig ()

» per-kernel basis using cudaFuncSetCacheConfig ()

THUNDER Research Group gé
Seoul National U ﬁ%& Lecture 20 - GPU Memory Hierarchy 15
e

Samsung DS

System Architect/Expert
2022

© Jaejin Lee

Using Shared Memory (cont’d)

__global _ void reverse(int *d, int n) {
__shared int s[64];
int t = threadIdx.x;
int tr = n-t-1;
s[t] = d[t]’
__syncthreads() ;
d[t] = s[tr];

int main(void) {
const int n = 64;
int a[n], r[n], d[n];
for (int i = 0; i < n; i++) {
a[i] = i; r[i] = n-i-1; d[i] = O;
}
int *d _d; cudaMalloc(&d d, n * sizeof(int));
cudaMemcpy (d_d, a, n*sizeof(int), cudaMemcpyHostToDevice) ;
reverse<<<1l,n>>>(d_d, n);
cudaMemcpy (d, d _d, n*sizeof(int), cudaMemcpyDeviceToHost) ;
for (int i = 0; i < n; i++)
if (d[i] '= r[i]) printf("Error: d[%d]!'=r[%d] (%d, %d)n",
i, 1, d[i], r[i]):

TIHII!JIINIDIEIIR Rgselargh Group :;41;’-‘;’;{0:‘5/
Seoul National University ¢ B} ¥ Lecture 20 - GPU Memory Hierarchy 16
Mgt HE Ay Wiy

Samsung DS
System Architect/Expert
2022

© Jaejin Lee

Using Shared Memory (cont’d)

__global _ void reverse(int *d, int n) {
// Dynamic shared memory
extern _ shared int s[];
int t = threadIdx.x;
int tr = n-t-1;
s[t] = d[t]’
__syncthreads() ;
d[t] = s[tr];
}
int main(void) {
const int n = 64;
int a[n], r[n], d[n];
for (int i = 0; i < n; i++) {
a[i] = i; r[i] = n-i-1; d[i] = O;
}
int *d _d; cudaMalloc(&d d, n * sizeof(int));
cudaMemcpy (d_d, a, n*sizeof(int), cudaMemcpyHostToDevice) ;
reverse<<<l,n,n*sizeof (int)>>>(d_d, n);
cudaMemcpy (d, d _d, n*sizeof(int), cudaMemcpyDeviceToHost) ;
for (int i = 0; i < n; i++)
if (d[i] '= r[i]) printf("Error: d[%d]!'=r[%d] (%d, %d)n",
i, 1, d[i], r[i]):

TIHII!JINIDIEIIR Rgselargh Group :;41;’-‘;’;{0:‘5/
Seoul National University ¢ B} ¥ Lecture 20 - GPU Memory Hierarchy 17
Mgt HE Ay Wiy

