#include "mat_mul.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 #define NUM_WORK_ITEM (32) #define VECTOR_WIDTH (16) #define RTS (NUM_WORK_ITEM / VECTOR_WIDTH) #define ALIGN_UP(_X, _Y) (((_X) + (_Y) - 1) & ~((_Y) - 1)) int num_devices = 0; __global__ void sgemm(float *__restrict A, float *__restrict B, float *__restrict C, int M, int N, int K, int NON_OPTIMAL) { // blockDim.x -> NUM_WORK_ITEM const int i = threadIdx.x; // row index of C const int j = threadIdx.y; // column index of C const int global_row = NUM_WORK_ITEM * blockIdx.x + i; const int global_col = NUM_WORK_ITEM * blockIdx.y + j; float intermediate_val[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}; __shared__ float tileA[NUM_WORK_ITEM][NUM_WORK_ITEM]; __shared__ float tileB[NUM_WORK_ITEM][NUM_WORK_ITEM]; if (NON_OPTIMAL == 0) { const int num_tiles = K / NUM_WORK_ITEM; // printf("i : %d, j : %d, global_row : %d, global_col : %d\n", i, j, global_row, global_col); for (int t = 0; t < num_tiles; t++) { for (int w = 0; w < VECTOR_WIDTH; w++) { const int t_row = NUM_WORK_ITEM * t + i; const int t_col = NUM_WORK_ITEM * t + j; tileA[i + w * RTS][j] = A[((global_row + w * RTS)) * K + t_col]; tileB[i + w * RTS][j] = B[((t_row + w * RTS)) * N + global_col]; } __syncthreads(); for (int k = 0; k < NUM_WORK_ITEM; k++) { for (int w = 0; w < VECTOR_WIDTH; w++) { intermediate_val[w] += tileA[i + w * RTS][k] * tileB[k][j]; } } __syncthreads(); } for (int w = 0; w < VECTOR_WIDTH; w++) { C[(global_row + w * RTS) * N + global_col] = intermediate_val[w]; } } else { const int num_tiles = (K + NUM_WORK_ITEM - 1) / NUM_WORK_ITEM; // printf("i : %d, j : %d, global_row : %d, global_col : %d\n", i, j, global_row, global_col); for (int t = 0; t < num_tiles; t++) { for (int w = 0; w < VECTOR_WIDTH; w++) { const int t_row = NUM_WORK_ITEM * t + i; const int t_col = NUM_WORK_ITEM * t + j; if (global_row + w * RTS >= M || t_col >= K) { tileA[i + w * RTS][j] = 0.0f; } else { tileA[i + w * RTS][j] = A[((global_row + w * RTS)) * K + t_col]; } if (t_row + w * RTS >= K || global_col >= N) { tileB[i + w * RTS][j] = 0.0f; } else { tileB[i + w * RTS][j] = B[((t_row + w * RTS)) * N + global_col]; } } __syncthreads(); for (int k = 0; k < NUM_WORK_ITEM; k++) { for (int w = 0; w < VECTOR_WIDTH; w++) { intermediate_val[w] += tileA[i + w * RTS][k] * tileB[k][j]; } } __syncthreads(); } for (int w = 0; w < VECTOR_WIDTH; w++) { if(global_row + w * RTS >= M || global_col >= N) { break; } else { C[(global_row + w * RTS) * N + global_col] = intermediate_val[w]; } } // printf("C[%d] = , %+.3f, %+.3f, %+.3f, %+.3f,...\n", (global_row) * N + global_col, intermediate_val[0],intermediate_val[1],intermediate_val[2],intermediate_val[3]); } } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int M, N, K; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU], Msize[MAX_NUM_GPU]; static int NON_OPTIMAL; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { if (_M % (NUM_WORK_ITEM * num_devices) != 0 || _N % NUM_WORK_ITEM != 0 || _K % NUM_WORK_ITEM != 0) { NON_OPTIMAL = 1; } else { NON_OPTIMAL = 0; } // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { dim3 blockDim(RTS, NUM_WORK_ITEM, 1); dim3 gridDim(ALIGN_UP(Msize[i], NUM_WORK_ITEM) / NUM_WORK_ITEM , \ ALIGN_UP(N, NUM_WORK_ITEM) / NUM_WORK_ITEM, 1); CUDA_CALL( cudaSetDevice(i) ); sgemm<<>>(a_d[i], b_d[i], c_d[i], Msize[i], N, K, NON_OPTIMAL); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); Msize[i] = Mend[i] - Mbegin[i]; } Mend[num_devices - 1] = M; Msize[num_devices - 1] = Mend[num_devices - 1] - Mbegin[num_devices - 1]; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Msize[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Msize[i]) * N * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K, (Msize[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i], (Msize[i]) * N * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }