#include "mat_mul.h" #include #include #define BLOCK_DIM 4 #define TS 32 #define WPT 16 #define RTS (TS/WPT) #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 int num_devices = 0; // n->K p->N m->M __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) { const int row = threadIdx.x;//); // row index of C const int col = threadIdx.y;//); // column index of C const int global_row = (blockDim.x*WPT)* blockIdx.x + threadIdx.x; const int global_col = blockDim.y * blockIdx.y + threadIdx.y; __shared__ float subA[TS][TS]; __shared__ float subB[TS][TS]; float accum[WPT]; for (int w = 0; w < WPT; w++) { accum[w] = 0.0f; } const int num_tiles = (K+TS-1)/TS; for (int t = 0; t < num_tiles; t++) { for (int w = 0; w < WPT; w++) { const int tiledRow = TS*t + row; const int tiledCol = TS*t + col; /*if (M <= global_row) subA[row + w*RTS][col] = 0.0f; else*/ if (K <= tiledCol) subA[row + w*RTS][col] = 0.0f; else if (M <= (global_row + w*RTS)) subA[row + w*RTS][col] = 0.0f; else subA[row + w*RTS][col] = A[(global_row + w*RTS)*K + tiledCol]; if (N <= global_col) subB[row + w*RTS][col] = 0.0f; //else if (K <= tiledRow) subB[row + w*RTS][col] = 0.0f; else if (K <= (tiledRow + w*RTS)) subB[row + w*RTS][col] = 0.0f; else subB[row + w*RTS][col] = B[(tiledRow + w*RTS)*N + global_col]; } __syncthreads(); //barrier(CLK_LOCAL_MEM_FENCE); for (int k = 0; k < TS; k++) { for (int w = 0; w < WPT; w++) { accum[w] += subA[row + w*RTS][k] * subB[k][col]; } } //barrier(CLK_LOCAL_MEM_FENCE); __syncthreads(); } for (int w = 0; w < WPT; w++) { if (M <= (global_row + w*RTS));// C[(global_row + w*RTS)*N + global_col] = 0.0f; else if (N <= global_col);// C[(global_row + w*RTS)*N + global_col] = 0.0f; else C[(global_row + w*RTS)*N + global_col] = accum[w]; } /* __shared__ float A_tile[BLOCK_DIM][BLOCK_DIM]; __shared__ float B_tile[BLOCK_DIM][BLOCK_DIM]; float acc_sum{0}; for (int tile_idx{0}; tile_idx < ceilf(static_cast(K) / BLOCK_DIM); ++tile_idx) { int i{blockIdx.y * blockDim.y + threadIdx.y}; int j{tile_idx * blockDim.x + threadIdx.x}; if ((i < M) && (j < K)) { A_tile[threadIdx.y][threadIdx.x] = A[i * K + j]; } else { A_tile[threadIdx.y][threadIdx.x] = 0; } i = tile_idx * blockDim.y + threadIdx.y; j = blockIdx.x * blockDim.x + threadIdx.x; if ((i < K) && (j < N)) { B_tile[threadIdx.y][threadIdx.x] = B[i * N + j]; } else { B_tile[threadIdx.y][threadIdx.x] = 0; } __syncthreads(); for (int k{0}; k < BLOCK_DIM; ++k) { acc_sum += A_tile[threadIdx.y][k] * B_tile[k][threadIdx.x]; printf("threadidx.y %d k %d threadidx.x %d k %d \n", threadIdx.y, k, threadIdx.x, k); } __syncthreads(); } // 2D block and 2D thread // Each thread computes one cell in C. int i{blockIdx.y * blockDim.y + threadIdx.y}; int j{blockIdx.x * blockDim.x + threadIdx.x}; if ((i < M) && (j < N)) { C[i * N + j] = acc_sum; } */ /* int i = blockDim.x * blockIdx.x + threadIdx.x; int j = blockDim.y * blockIdx.y + threadIdx.y; if (i >= M || j >= N) return; C[i * N + j] = 0; for (int k = 0; k < K; ++k) { C[i * N + j] += A[i * K + k] * B[k * N + j]; } */ } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int M, N, K; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // Launch kernel on every GPU int M_size[MAX_NUM_GPU]; for (int i = 0; i < num_devices; i++) { //dim3 blockDim(1, 1, 1); //dim3 gridDim(Mend[i] - Mbegin[i], N, 1); dim3 blockDim(TS/WPT, TS, 1); dim3 gridDim(((Mend[i] - Mbegin[i] + TS -1)/TS), (N+TS-1)/TS,1); M_size[i] = Mend[i] - Mbegin[i]; CUDA_CALL( cudaSetDevice(i) ); sgemm<<>>(a_d[i], b_d[i], c_d[i], M_size[i], N, K); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); } Mend[num_devices - 1] = M; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K, (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }