#include "convolution.h" #include #include #include #include "util.h" #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 static float *input, *output, *filter; static float *in_d[MAX_NUM_GPU], *out_d[MAX_NUM_GPU], *fil_d[MAX_NUM_GPU]; static int N, C, H, W; static int K, R, S; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static int num_devices = 1; static int size[2]; static int NN[MAX_NUM_GPU]; static int OH, OW; #define TS 4 __global__ void conv( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { const int g_row = blockDim.x * blockIdx.x + threadIdx.x ; const int g_col = blockDim.y * blockIdx.y + threadIdx.y; int kernel_k = blockDim.z * blockIdx.z +threadIdx.z; int OH, OW; OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; if (kernel_k >= _K) return; int n, w; w = g_col; n = w / OW; w = w - n * OW; int col = w; int row = g_row; if (g_row >= OH || g_col >= _N*OW) return; int row_calc = row * _stride - _pad; int col_calc = col * _stride - _pad; float o = 0.0f; for (int c = 0 ; c < _C ; c++) { for (int r = 0 ; r < _R ; r++) { for (int s = 0 ; s < _S ; s++) { int h = row_calc + r * _dilation; int w = col_calc + s * _dilation; if (h < 0 || w < 0 || h >= _H || w >= _W) continue; float in = _input[n*_C*_W*_H + c*_W*_H + h*_W + w]; float fil = _filter[kernel_k*_C*_R*_S + c*_R*_S + r*_S + s]; o += in * fil; } } } _output[n*_K*OH*OW + kernel_k*OH*OW + row*OW + col] = o; } void convolution ( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int offset = 0; MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; if (mpi_rank == 0 && mpi_world_size == 2 && size[1] !=0 ) { MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, _K*_C*_R*_S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); if (size[mpi_rank] < MAX_NUM_GPU) { num_devices = size[mpi_rank]; } } else if (mpi_rank == 1 && size[mpi_rank] != 0) { alloc_tensor(&input, size[1], C, H, W); alloc_tensor(&output, size[1], K, OH, OW); alloc_tensor(&filter, _K, _C, _R, _S); MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, _K*_C*_R*_S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); if(size[mpi_rank] < MAX_NUM_GPU) { num_devices = size[mpi_rank]; } } offset = 0; for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaMemcpy(in_d[i], input + offset, NN[i]*C*H*W*sizeof(float), cudaMemcpyHostToDevice)); CUDA_CALL(cudaMemcpy(fil_d[i], filter, K*C*R*S*sizeof(float),cudaMemcpyHostToDevice)); offset += NN[i] * C * H * W; } for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaDeviceSynchronize()); } for (int i = 0; i < num_devices; i++) { dim3 gridDim((OH+TS-1)/TS, (NN[i]*OW+TS-1)/TS, (K+TS-1)/TS); dim3 blockDim(TS, TS, TS); CUDA_CALL(cudaSetDevice(i)); conv<<>>(in_d[i], out_d[i], fil_d[i], NN[i], _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride); } // DO NOT REMOVE; NEDDED FOR TIME MEASURE for (int i = 0; i 4) size[1] = _N / 2; else size[1] = 0; size[0] = N - size[1]; if (size[mpi_rank] < MAX_NUM_GPU) { num_devices = size[mpi_rank]; for (int i = 0; i < size[mpi_rank]; i++) NN[i] = 1; } else { num_devices = MAX_NUM_GPU; int quotient = size[mpi_rank] / MAX_NUM_GPU; int remain = size[mpi_rank] % MAX_NUM_GPU; for (int i = 0 ; i < MAX_NUM_GPU; i++) { NN[i] = quotient; if (i < remain) NN[i]++; } } // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaSetDevice(i)); CUDA_CALL(cudaMalloc(&in_d[i], NN[i]*C*H*W*sizeof(float))); CUDA_CALL(cudaMalloc(&out_d[i], NN[i]*K*OH*OW*sizeof(float))); CUDA_CALL(cudaMalloc(&fil_d[i], K*C*R*S*sizeof(float))); } } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }