#include "convolution.h" #include #include #include "util.h" #include static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; #define MAX_NODE 2 static int size[MAX_NODE], offset[MAX_NODE]; void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { MPI_Request request; MPI_Status status; if(mpi_rank == 0) { input = _input; output = _output; filter = _filter; for (int node=1; node < mpi_world_size; node++) { MPI_Isend(&input[offset[node]*C*H*W], size[node]*C*H*W, MPI_FLOAT, node, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, K*C*R*S, MPI_FLOAT, node, 0, MPI_COMM_WORLD, &request); } } else { MPI_Recv(input, size[mpi_rank]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); } if (pad == 0 && dilation == 1 && stride == 1 && (S % 16 == 0)){ #pragma omp parallel for collapse(2) num_threads(100) for (int n = 0; n < size[mpi_rank]; ++n) { for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { __m512 vo = _mm512_setzero_ps(); for (int c = 0; c < C; ++c) { __m512 vi, vf; for (int r = 0; r < R; ++r) { for (int s = 0; s < S; s+=16) { int h = oh + r; int w = ow + s; vf = _mm512_loadu_ps(&filter[k*C*R*S+c*R*S+r*S+s]); vi = _mm512_loadu_ps(&input[n*C*H*W+c*H*W+h*W+w]); vo = _mm512_fmadd_ps(vf,vi,vo); } } } output[n*K*OH*OW+k*OH*OW+oh*OW+ow] = _mm512_reduce_add_ps(vo); } } } } } else { #pragma omp parallel for collapse(3) num_threads(100) for (int n = 0; n < size[mpi_rank]; ++n) { for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } } } } } if(mpi_rank == 0) { for (int node=1; node < mpi_world_size; node++) { MPI_Recv(&output[offset[node]*K*OH*OW], size[node]*K*OH*OW, MPI_FLOAT, node, 0, MPI_COMM_WORLD, &status); } } else { MPI_Isend(output, size[mpi_rank]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; //Calc partitioned size for (int i=0; i < mpi_world_size; i++) { int st = i * (N/mpi_world_size); int ed = i == mpi_world_size-1 ? N : (i+1)*(N/mpi_world_size); size[i] = ed - st; offset[i] = st; } if(mpi_rank != 0) { alloc_tensor(&input, size[mpi_rank], C, H, W); alloc_tensor(&output, size[mpi_rank], K, OH, OW); alloc_tensor(&filter, K, C, R, S); } } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }