#include "convolution.h" #include "util.h" #include #include #include static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static int min(int x, int y) { return x < y ? x : y; } #define C_TILESIZE (8) #define S_TILESIZE (8) #define R_TILESIZE (8) void convolution_omp16(int ns, int ne) { #pragma omp parallel for num_threads(80) collapse(4) schedule(dynamic) for (int n = ns; n < ne; ++n) { // # of output channel (= # of input image) for (int k = 0; k < K; ++k) { // # of output image (filter) channel for (int oh = 0; oh < OH; ++oh) { // output height (=row) for (int ow = 0; ow < OW; ++ow) { // output width (=column) __m512 vo = _mm512_setzero_ps(); for (int cc = 0; cc < C; cc += C_TILESIZE) for (int rr = 0; rr < R; rr += R_TILESIZE) for (int c = cc; c < min(C, cc+C_TILESIZE); ++c) { // # of input channel for (int r = rr; r < min(R, rr+R_TILESIZE); ++r) { // filter height (=row) int h = oh * stride - pad + r * dilation; int w = ow * stride - pad; if (h < 0 || h >= H || w < 0 || w >= W) continue; int idx_i = (n * C * H * W) + (c * H * W) + (h * W) + w; int idx_f = (k * C * R * S) + (c * R * S) + (r * S); __m512 i = _mm512_loadu_ps( &input[idx_i]); __m512 f = _mm512_loadu_ps(&filter[idx_f]); vo = _mm512_fmadd_ps(i, f, vo); } } // float* o = (float*)&vo; float o[16]; _mm512_store_ps(o, vo); output[(n * K * OH * OW) + (k * OH * OW) + (oh * OW) + ow] = o[0] +o[1] +o[2] +o[3] +o[4] +o[5] +o[6] +o[7] + o[8] +o[9] +o[10] +o[11] +o[12] +o[13] +o[14] +o[15]; // vo[0] +vo[1] +vo[2] +vo[3] +vo[4] +vo[5] +vo[6] +vo[7] ; } } } } } void convolution_omp(int ns, int ne) { #pragma omp parallel for num_threads(80) collapse(4) schedule(dynamic) for (int n = ns; n < ne; ++n) { // # of output channel (= # of input image) for (int k = 0; k < K; ++k) { // # of output image (filter) channel for (int oh = 0; oh < OH; ++oh) { // output height (=row) for (int ow = 0; ow < OW; ++ow) { // output width (=column) float o = 0.f; for (int cc = 0; cc < C; cc += C_TILESIZE) for (int rr = 0; rr < R; rr += R_TILESIZE) for (int ss = 0; ss < S; ss += S_TILESIZE) for (int c = cc; c < min(C, cc+C_TILESIZE); ++c) { // # of input channel for (int r = rr; r < min(R, rr+R_TILESIZE); ++r) { // filter height (=row) for (int s = ss; s < min(S, ss+S_TILESIZE); ++s) { // filter width (=column) int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[(n * C * H * W) + (c * H * W) + (h * W) + w]; float f = filter[(k * C * R * S) + (c * R * S) + (r * S) + s]; o += i * f; } } } output[(n * K * OH * OW) + (k * OH * OW) + (oh * OW) + ow] = o; } } } } } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; // Allocate if(mpi_rank != 0){ alloc_tensor(&input, N, C, H, W); alloc_tensor(&output, N, K, OH, OW); alloc_tensor(&filter, K, C, R, S); } // else // printf("mpi_world_size = %d\n", mpi_world_size); // N split int ns[mpi_world_size], ne[mpi_world_size]; for (int i = 0; i < mpi_world_size; i++) { ns[i] = N / mpi_world_size * i; ne[i] = N / mpi_world_size * (i + 1); } ne[mpi_world_size - 1] = N; // Scatter Input int input_line = C*H*W; if (mpi_rank == 0) { for (int i = 1; i < mpi_world_size; i++) { MPI_Send(input + ns[i] * input_line, (ne[i] - ns[i]) * input_line, MPI_FLOAT, i, 0, MPI_COMM_WORLD); } } else { MPI_Recv(input + ns[mpi_rank] * input_line, (ne[mpi_rank] - ns[mpi_rank]) * input_line, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, nullptr); } // Broadcast Filter int filter_size = K*C*R*S; MPI_Bcast(filter, filter_size, MPI_FLOAT, 0, MPI_COMM_WORLD); // convolution_omp16(ns[mpi_rank], ne[mpi_rank]); if(S==16 && R==16 && dilation==1){ // printf("%d: omp16!\n", mpi_rank); convolution_omp16(ns[mpi_rank], ne[mpi_rank]); }else{ convolution_omp(ns[mpi_rank], ne[mpi_rank]); } // Gather Output int output_line = K*OH*OW; if (mpi_rank == 0) { for (int i = 1; i < mpi_world_size; i++) { MPI_Recv(output + ns[i] * output_line, (ne[i] - ns[i]) * output_line, MPI_FLOAT, i, 0, MPI_COMM_WORLD, nullptr); } } else { MPI_Send(output + ns[mpi_rank] * output_line, (ne[mpi_rank] - ns[mpi_rank]) * output_line, MPI_FLOAT, 0, 0, MPI_COMM_WORLD); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }