Lecture 06

o2 g AQ} AYE

41
Multicore Co

Spri

© Jg

0| 242!
Megchstn ZREE ot

http://aces.snu.ac.kr

THUNDER Research Group Sk
Seoul National U ‘\‘;’51 %
MetiEtn ds q:ll'a

70.414A
mputing
hg 2021
ejin Lee

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Processes

N J

« A process is an instance of a computer program that is being

executed

« A stream of instructions being executed

» Abstraction used by the operating system

« A process consists of:
* Registers
* Memory (code, data, stack, heap, etc.)
 |/O status (open file tables, etc.)

 Signal management information

S

THUNDER Research Group g.!f_f“’;la’
SecuNotrslUnversy B Lecture 06 - TEH|AQ} A2|=
HLE TS CT=

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

~ Supervisor Mode vs. User Mode

* Modern processors provides two different modes of execution:
» Supervisor (kernel) mode
« All instructions can be executed in supervisor mode (also known as protected
mode, system mode, monitor mode, or privileged mode)

* For the operating system kernel

« User mode

* The processor is allowed to execute only a subset of the instructions

« For all other software (including the remaining part of the operating system)

than the kernel

« Example:

/O instructions are privileged instructions

* An application needs to request an I/O service to the operating system to

perform I/O operations

THUNDER Research Group 9{5“’;{5’
Seoul National University g‘% Lecture 06 - EEA‘”ﬁQl’ ﬁa‘”E

MEtsE ¥E ey e

4190.414A

Multicore Computing

~ System Calls

* A system call is the way how a program running in user mode
requests a service to the operating system
 Typically implemented with a trap (a.k.a. an exception or a fault)
A trap instruction invoked by the program triggers a trap, resulting in
a switch to kernel mode

* The kernel performs some action to handle the trap before returning

control to the program

Spring 2021
© Jagjin Lee

THUNDER Research Group g.!f_f“’;la’
Seoul Natinsl Uniersty B Lecture 06 - TEH|AQ} A2|=
ETE e i

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Uniprogramming vs. Multiprogramming

N

* Uniprogramming
 Only one process at a time
- DOS

e Poor resource utilization

* Multiprogramming
« Multiple processes at a time

* Modern operating systems, such as Windows, Unix, Linux, etc.

e |ncreases resource utilization

THUNDER Research Group g.!f_f“’;la’
Seoul Natinsl Uniersty B Lecture 06 - TEH|AQ} A2|=
ETE e i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

~ Virtual Memory

* The operating system's abstraction of the physical memory in the

system

 Provides each process with the illusion that the process has
exclusive use of the memory and a much larger memory space

than that available in the system

THUNDER Research Group g.!f_f“’;la’
Secul Netoral Unirsty 4 B Lecture 06 - TEH|AQ} A2|=
ETE e i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

| Virtual Memory (cont’'d)

 Logical (virtual) address
* An address generated by the CPU
» Logical address space - the set of all logical (virtual) addresses generated
by a program
* Physical address
* An address seen by the physical memory
» Physical address space - the set of all physical addresses corresponding
to the logical addresses
* The virtual memory in the operating system is in charge of the run-
time mapping from virtual to physical addresses
» Exploits a hardware device called the memory-management unit (MMU)

for fast translation between virtual and physical addresses

THUNDER Research Group ;g,é“ P
S o e }ﬁg@ Lecture 06 - T2 M AQ} AgjlS
e i

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Address Space of a Process

N

« A process has its own private address space (virtual address space)
* A process cannot affect the state of another process directly
* Memory protection

» Kernel address space vs. user address space

3

Kernel address space

3

Shared libraries

User address space

Uninitialized data (.bss)

nitialized data (.data)

OXO00OO00O

THUNDER Research Group S4RT:¢
Seoul National University [T
MahEn HE a7

Lecture 06 - T2 M| AL} AP E

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Address Space of a Process (cont'd)

N

Phgsioal, address space

Process O's
virtual address space

Process 1's
virtual address space

Process w's
virtual address space

THUNDER Research Group 9{5“’;{5’
Seoul National University g‘% Lecture 06 - EEA‘”ﬁgf ﬁE‘HE

MEtsE ¥E ey e

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Communication Between Processes

N J

« Cooperation and coordination between processes are
accomplished by writing and reading to a location in the shared

address space

« Another way to achieve them is using an interprocess

communication (IPC) mechanism
« The IPC is a way of exchanging data between processes without
sharing any portion of their virtual address space

* Expensive

THUNDER Research Group ;g,é“ P
S o e }ﬁg@ Lecture 06 - T2 M AQ} AgjlS
e i

THUNDER Research Group

Seoul National University
METEta HS Ay

Process O's
virtual address space

Process 1's
virtual address space

Process n's
virtual address space

4
rA

v
2,74

L
Yy
g

Shared

Private

Shared

Private

Shared

Private

Communication Between Processes (cont’d)

Shared

Process 0

/ Process 1

Process n

Physical address space

Lecture 06 - T2 M| AR} A E

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

N

Concurrency J

« A computer system is typically a multiprogramming system
« Kernel processes execute system code

» User processes execute user code

« All these processes may execute concurrently on the same system

« Concurrency

* Instructions of one process are interleaved with those of another

process

* Implemented by context switches

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

THUNDER Research Group g.!f_f“’;la’
Secul Netoral Unirsty 4 B Lecture 06 - TEH|AQ} A2|=
2Hete Hs HY SR

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Context Switch

The CPU switches back and forth from process to process to execute

the instructions from different processes

« The CPU scheduler in the operating system is in charge of it
* A process context is the information that must be saved before a
context switch occurs to allow the continuation of the process later
» The operating system transfers control from the current process (say,
p) to another process (say,) after saving the context of p and
restoring the context of g
* Then, control is passed to the location of g 's code where it left off

due to a previous context switch

THUNDER Research Group ;g,é“ R
S }ﬁg@ Lecture 06 - T2 M| AL} AR|E
preampriiiod A

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Process State Transitions

« When a program runs, the corresponding process changes state
* Running: using the CPU
* Ready: no CPU available

 Blocked: waiting for some event (e.g., I/0O) to occur

Requested resource

CPU available wot avatlable

Running out
of allocated time

Requested resource allocated

»g THUNDER Research Group faﬁ;f“’;{a
’ Seoul National University &’h% Lecture 06 - T2 M| AR} A E
MeoiEn s oyl -

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Preemptive vs. Cooperative

N

» Preemptive multitasking
* Permits preemption of tasks
« All processes will get some amount of CPU time at any given time
* More reliably guarantee each process a regular slice of operating time

* Nearly all modern operating systems support preemptive multitasking

» Cooperative multitasking
 Tasks must be explicitly programmed to yield when they do not need
system resources (e.g., CPU)

 Rarely used in these days

THUNDER Research Group g.!f_f“’;la’
Seoul Natinsl Universty *ﬁ%@ Lecture 06 - TEH|AQ} A2|=
2Hete Hs HY SR

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

| Threads

* Thread of control
* Independent Fetch/Decode/Execute loop
« The smallest unit of processing that can be scheduled by an
operating system
A thread logically consists of:

* Code
* Registers
+ Stack

* Thread-local data

e User-level thread vs. kernel-level thread

THUNDER Research Group ;ﬁf‘"’;{o“
Seoul National University .‘% Lecture 06 - HEA-” /\9|, N E-” -
Mgoistn ds gpy YA ODZMALLAYHE

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

| Threads (cont’d) J

* In general, a thread is contained in a process
« Multiple thread can exist within the same process

e Share resources with other threads

 Code
* Data

« OS resources: open files, signals, etc.

THUNDER Research Group ;ﬁf‘"’;{o“
Seoul National University .‘% Lecture 06 - HEA-” /\9|, N E-” -
Mgoistn ds gpy YA ODZMALLAYHE

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Multi-threaded Process

a thread

Process

Lecture 06 - T2 M|AR} A E

THUNDER Research Group AR TR
’ Seoul National University *‘é
RN 1

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Communication Between Threads

« Multiple threads within a process share portions of the virtual

address space of the process (e.g., text (code) and data sections)

by default

« Cooperation and coordination between threads in the same
process is accomplished by reading and writing variables

allocated in the shared space
« Writes to a shared address by one thread is visible to reads of the

other threads

THUNDER Research Group gé
Seoul National U ﬁ%ﬁ Lecture 06 - T2 M|AR} A E
e

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

~ Thread Library |

* Provides the programmer an API for creating and managing

threads
» A user-level library entirely in user space with no kernel support

* A kernel-level library supported directly by the operating system
« Code and data structures for the library exist in kernel space

« An API function call typically results in a system call

« POSIX Pthreads

THUNDER Research Group g.!f_f“’;la’
Seoul Natinsl Uniersty B Lecture 06 - TEH|AQ} A2|=
2Hete Hs HY SR

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

User-level Threads vs. Kernel-level Threads

N

« User-level threads
» Threading operations occur in user space

* Threads are managed by a runtime library

e Kernel-level threads

e Each thread has its own execution context

* Threads are managed by the operating system

THUNDER Research Group g.!f_f“’;la’
Rttt *ﬁ%@ Lecture 06 - T2 M AR} A2fE
j2ista dE Hpu o

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Linux Schedulers

Completely Fair Scheduler (CFS)
e Since kernel 2.6.23

No distinction between processes and threads in scheduling

To maintain fairness in providing processor time to processes

* A run-queue for each processor

« Contains processes whose state is ‘ready’

Nice values
* A processes’ relative weight used in CFS

* Lower nice value — higher weight — higher priority

THUNDER Research Group g.!f_f“’;la’
Seoul Natinsl Uniersty B Lecture 06 - TEH|AQ} A2|=
ETE e i

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Time Slice and Virtual Runtime

N

e Time slice

* The time interval for which a process can run without being

preempted

* Proportional to the processes’ weight

 Virtual runtime
« A measure for the amount of time provided to a given process

* The smaller a processes’ virtual runtime, the higher its need for the

processor

THUNDER Research Group g.!f_f“’;la’
Secul Netoral Unirsty 4 B Lecture 06 - TEH|AQ} A2|=
2Hete Hs HY SR

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Virtual Runtime

« A processes cumulative execution time inversely scaled by its

weight

« The weight is a decay factor for the time for which a process has run

virtual runtime(P;, t) = x//—“x physical runtime(P;, t)

i

W, = the weight for the nice value O

THUNDER Research Group E%“ :"3:
S e le e % Lecture 06 - TR2H|AQ} AT
= iy =

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

| Red-black Tree

e A self-balanced tree

* No path in the tree will ever be more than twice as long as any

other

« Operations on the tree occur in O(log n), where n is the number of

nodes in the tree

THUNDER Research Group g.!f_f“’;la’
Seoul Natinsl Uniersty S Lecture 06 - TEH|AQ} A2|=
ETE e i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Red-black Tree (cont’'d)

N J

CFS maintains a red-black tree ordered by the virtual runtime

* Run-queue

Maintained independently for each processor

The process with lowest virtual runtime is the left-most leaf node

(highest: the right-most leaf node)

The scheduler picks the left-most node to schedule next to maintain

fairness

* The task will be added to the tree with a new virtual runtime after running

THUNDER Research Group ;g,é“ P
S }ﬁg@ Lecture 06 - T2 M| AL} AR|E
preampriiiod i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

CFS Algorithm

Performs scheduling on each scheduling tick

Decrement the time slice of the currently running process P by the
tick period

* When the time slice reaches 0, a flag is set

Update the virtual runtime of P

Check the flag

* |f set, preempt P and insert it to the run-queue

* Schedule the process in the left-most node in the red-black tree

THUNDER Research Group ;g,é“ P
S o e }ﬁg@ Lecture 06 - T2 M AQ} AgjlS
e i

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

~ SMP Scheduling J

* CFS

« Scheduling processes for a single processor

* Run-queue load balancing

* Distribute processes across multiple processors

THUNDER Research Group ;ﬁf""’;{o"
Seoul National University J@%%} Lecture 06 - EEA‘”ﬁQl’ ﬁa‘”E
W

Mgtistn ds A7y U

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Scheduling Domains

A set of processors whose workloads should be kept balanced by the kernel

 Share properties and scheduling policies

» Can be balanced against each other
* Partitioned in one or more groups

» Hierarchically organized

« Top scheduling domain: the set of all processors in the system
« Each scheduling domain contains policy information which controls how decisions

are made at that level of the hierarchy

| : 1 \ :

| [) |
I Logical o Logical b
I core 0 R core 6 vl
1 X |
| Logical b Logical o
| core 1 b core7 HR :

] [))
: i Physical core| |Physical core E E Physical core| |Physical core E :

I] [) 1
|

Top level

Seoul National University

Mgoistn ds dpy Y

THUNDER Research Group 4 *303:
Y % Lecture 06 - ZZMAQ} A E

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Run-queue Balancing

N

 Perform load balancing on each rebalancing tick

* Push migration

« Check hierarchically if a scheduling domain is significantly

unbalanced

* Find the busiest run-queue in the domain
* By calculating the load of each processor or group

* Load of a processor: run-queue length

» Migrate processes from the busiest run-queue to another one

THUNDER Research Group g.!f_f“’;la’
pptr iy A % Lecture 06 - T2 M| AL} AR E
fetista 4E a7y i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

| Push vs. Pull

» Push migration
» A specific process periodically checks the load on each processor and

evenly distributes the load by moving (or pushing) processes from

overloaded to idle or less-busy processors

 Pull migration

* Occurs when an idle processor pulls a waiting process from a busy

Processor

* The Linux scheduler implements both techniques
* Linux runs its load balancing algorithm every 200 milliseconds (push
migration) or whenever the run-queue for a processor is empty (pull

migration)

THUNDER Research Group 4% A’;{o“
Seoul National University ‘\‘;’%‘
MethEm Hs oy W

Lecture 06 - T2 M|AR} A E

S

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Negative Aspect of Process Migration

N

* The new processor’s cache is cold for a migrated task

* Needs to pull its data into the cache

THUNDER Research Group g.!f_f“’;la’
SecuNotrslUnversy B Lecture 06 - TEH|AQ} A2|=
205t d& A7 SR

