4190.414A
Multicore Computing
Spring 2021
© Jaejin Lee
Lecture 18
OpenMP
J

0| 242!
Megchstn ZREE ot

http://aces.snu.ac.kr

THUNDER Research Group Sk
Seoul National U ‘\‘;’51 %
MetiEtn ds q:ll'a

OpenMP

An API for shared-memory parallelism in C, C++ and Fortran

programs

* A set of compiler directives, library routines, and environment

variables for parallel application programmers

Portable across shared-memory architectures

Compiler generates thread program and synchronization

» Will not parallelize automatically

OpenMP Application Program Interface Version 5.0

e http://www.openmp.org

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

THUNDER Research Group g.!f_f“’;@
si::ltr;;:ﬁnia: gn::i'.w ¢ % Lecture 18 - OpenMP
EHISLE TS CTE 7

http://www.openmp.org/

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Threading in OpenMP

N

 Thread

« An execution entity with a stack and associated static memory, called

thread-private memory

* OpenMP thread

* A thread that is managed by the OpenMP runtime system

e Thread-safe routine

A routine that performs the intended function even when executed

concurrently (by more than one thread)

THUNDER Research Group ;g,é“ P
S o e o ﬁ%& Lecture 18 - OpenMP 3
e i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

OpenMP Execution Model

» Fork-join parallelism

* Fork - master thread spawns a team of threads
* The master thread always has thread ID O

« Join - when the team of threads complete the tasks in the parallel section, they

terminate synchronously, leaving only the master thread
 Parallel region - a block of code executed by all threads simultaneously

« Implementation optimization

« Worker threads spin waiting on next fork

Worker threads

Master thread

Parallel region Parallel region

THUNDER Research Group 9&;5“’;{0‘
Seoul National University %h%E? Lecture 18 - Opel’]MP 4
SN

Mghem HE ARy

Pragmas

Special preprocessor instructions
« To allow behaviors that are not part of the basic C specification

« Compilers that do not support the pragmas ignore them

Format
* #pragma omp directive_name [clause [clause | ...] new-line

* case sensitive

Include file

* #include <omp.h>

Conditional compilation
o #ifdef _OPENMP
« #endif

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

THUNDER Research Group ;ﬁé‘"ﬁlﬁ'
Seoul National University gﬁ@%%} Lecture 18 - Ope nMP
W2

Hgofstn 1 A7y

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Query Functions

* int omp_get_num_threads(void);

* Returns the number of threads currently in the team executing the

parallel region from which it is called

* int omp_get_thread_num(void);
e Returns the thread number, within the team, that lies between 0 and
omp_get_num_threads() - 1, inclusive

* The master thread of the team is thread 0

THUNDER Research Group ;g,é“ P
S o e o ﬁ%& Lecture 18 - OpenMP 6
e i

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Parallel Region Construct

* When a thread encounters a parallel construct, a team of threads is created

to execute the parallel region
e Each thread executes the same code (SPMD)

* The thread that encountered the parallel construct becomes the master thread

(thread number = 0) of the new team

* The number of threads in the team remains constant for the duration of that
parallel region

« Within a parallel region, thread numbers uniquely identify each thread

 Format
#pragma omp parallel [clause [[,] clause] ...] new-line

structured-block

» By default, all variables are shared

THUNDER Research Group 4% ";{03:
Seoul National University ‘\‘;’h% Lecture 18 - Open MP ,
Hgofstn 1 A7y ﬁ;lrﬁ !

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Hello World in OpenMP

* The program should be correct without the pragmas and library
function calls

 gcc -fopenmp ...

$ifdef OPENMP
#include <omp.h> #include <omp.h>

#endif

THUNDER Research Group “&"03’
Seoul National University “"’] Ay Lecture 18 - OpenMP 8
METHEa HE APy ‘ﬂl;ség

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Hello World in OpenMP (contd.)

#include <stdio.h>

#include <stdlib.h>
#include <omp.h>

void hello(void) ;

void main(int argc, char* argv[]) {
int cnt_threads = strtol(arg[l], NULL, 10);

#pragma omp parallel num_ threads (cnt_threads)
hello() ;

return 0O;
void hello(void) {
int my id = omp_get thread num();
int num threads = omp_get num threads();

printf (“Hello world! %d %d\n”, my id, num threads);

THUNDER Research Group 9&;5“’;{0‘
Seoul National University %h%E? Lecture 18 - Opel’]MP 9
SN

Mgthstm 3S 74

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Another Example for Parallel Region

#include <stdio.h>
#include <omp.h>

void main () {
int num_threads, tid;
num_threads = omp_get num_ threads() ;

printf ("Sequential section: # of threads = %d\n", num_threads) ;

#pragma omp parallel private(tid)

{
tid = omp get thread num();
printf ("Parallel section: Hello world from thread %d\n",
tid) ;
if (tid == 0) {
num_threads = omp_get num threads();
printf ("Parallel section: # of threads = %d\n",
num_threads) ;
}
}

—

THUNDER Research Group 4% '“'{0“
Seoul National University ‘\‘;’%‘
MethEm Hs oy W

Lecture 18 - OpenMP 10

S

4190.414A

Multicore Computing

Setting the Number of Threads

#include <stdio.h>
#include <omp.h>

void main() {
int num threads, tid;
omp set num threads(2);

num_ threads = omp get num threads();

printf ("Sequential section: # of threads
= %d\n" ,num_ threads) ;

#pragma omp parallel private (tid)
{
tid = omp get thread num();
printf ("Parallel section: Hello world from thread %d\n",
tid) ;

if (tid == 0) {
num threads = omp get num threads()
printf ("Parallel section: # of threads = %d\n",
num threads) ;

Spring 2021
© Jagjin Lee

g THUNDER Research Group 9&;5“’;{0"
Seoul National University &’h% Lecture 18 - Openl\/IP 11
Mgoistn ds dpy Y

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

if/private/shared clauses

if (scalar_expression)
* Only execute in parallel if scalar_expression evaluates to true

« Otherwise, execute serially

private(list)
e All references are to the local variable

« Values are undefined on entry and exit

shared(list)

* Accessible by all threads in the team

firstprivate

* private and copy initial value from global variable

lastprivate

* private and copy back final value to global variable

THUNDER Research Group 9{5“’;{5’
Seoul N?tion?l University g‘% Lecture 18 - Openl\/IP 12
AETherm HE 67k

S

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Work Sharing Constructs

A work-sharing construct distributes the execution of the
associated region among the members of the team that
encounters it

* If the team consists of only one thread then the work sharing
region is not executed in parallel

« A work-sharing region has no barrier on entry
« An implied barrier exists at the end of the work-sharing region

* If a nowait clause is present, an implementation may omit the barrier

THUNDER Research Group ;g,é“ R
S o e o ﬁ%& Lecture 18 - OpenMP 13
e A

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Loop Construct

 Specifies that the iterations of one or more associated loops will
be executed in parallel by threads in the team
* The iterations are distributed across threads that already exist in

the team executing the parallel region

#pragma omp for [clause [[,] clause] ...] new-line

for-loops

THUNDER Research Group 4 A’;{%
Seoul meon?l University %m% Lecture 18 - Openl\/IP 14
/ MEchstn HE 7 et

Loop Construct (contd.)

#include <math.h>
void nowait example(int n, int m, float *a, float *b,

float *y, float *z)

{
int 1i;
#pragma omp parallel
{
#pragma omp for nowait
for (i=1l; i<n; i++)
b[i] = (a[i] + a[i-1]) / 2.0;
#pragma omp for nowait
for (i=0; i<m; i++)
y[i]l = sqrt(z[i]);
}
}

4190.414A

Multicore Computing

Spring 2021
© Jagjin Lee

Seoul National University »
MethEm Hs oy W

THUNDER Research Group ;&fﬁ‘%?

S

Lecture 18 - OpenMP

15

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

~ Thread Scheduling Clause

« schedule(static [, chunk_size])

* |terations are divided into chunks of size chunk_size, and the chunks
are assigned to the threads in the team in a round-robin fashion in

the order of the thread number

 schedule(dynamic [, chunk_size])

e The iterations are distributed to threads in the team in chunks as the

threads request them

« Each thread executes a chunk of iterations, then requests another chunk,

until no chunks remain to be distributed

THUNDER Research Group g.!f_f“’;la
Seo:l N?tlon?lgnlverirlty @%@ Lecture 18 - Open MP 16
HETs HS A i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

| Thread Scheduling Clause (cont’d)

 schedule(guided [, chunk_size])
 To reduce the overhead of dynamic
« The iterations are assigned to threads in the team in chunks as the

executing threads request them

« Each thread executes a chunk of iterations, then requests another chunk, until

no chunks remain to be assigned
* For a chunk_size of k, the size of each chunk is proportional to the
number of unassigned iterations divided by the number of threads in the

team, decreasing to k

« With the restriction that the chunks do not contain fewer than k iterations
e auto

» The decision regarding scheduling is delegated to the compiler and/or

runtime system

D, cE

THUNDER Research Group g.!f_f“’;la
Seoul meon?l University %: % Lecture 18 - Opel’]M P 17
Merjstn g A7d ‘

4190.414A

Multicore Computing

Sections Construct

A non-iterative work-sharing construct that contains a set of

structured blocks that are to be distributed among and executed

by the threads in a team

#pragma omp sections [clause[[,] clause] ...] new-line
{ [#pragma omp section new-line]
structured-block
[#pragma omp section new-line
structured-block]

}

 Each structured block is executed once by one of the threads in

the team

THUNDER Research Group
Seoul National University
MECHen »E A4

b‘gfo

0
e

e
£

(L

=

g
N

Lecture 18 - OpenMP 18

Spring 2021
© Jaejin Lee

Sections Construct (cont’d)

#pragma omp parallel

{

#pragma omp

{

} /* omp end sections */

#pragma
{.A.}
#pragma
{.B.}
#pragma
{.C.}
#pragma
{.D.}

sections

omp

omp

omp

omp

section

section

section

section

} /* omp end parallel */

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

¥ THUNDER Research Group 45 '“'{0"
’ Seoul National University M h%

Hgofstn 1 A7y

SV

Lecture 18 - OpenMP

19

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Sections Construct (cont’d)

#pragma omp parallel shared(n,a,b,c,d)
private (1)

{
#pragma omp sections nowait
{
#pragma omp section
for (i = 0; i < n; i++)
d[i] = 1.0/a[i];
#pragma omp section
for (1 = 0; 1 < n-1; i++)
b[i] = a[i] + c[i+1l];
}
}

~ THUNDER Research Gro up taf,é
Seoul Nat %ﬁ Lecture 18 - OpenMP 20
A2chstn *-5 “'-_rL

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Single Construct

 Specifies that the associated structured block is executed by only
one of the threads in the team (not necessarily the master thread)
 The other threads in the team, which do not execute the block,

wait at an implicit barrier at the end of the single construct unless

a nowait clause is specified

#pragma omp single [clause[[,] clause] ...] new-line
structured-block

THUNDER Research Group 4 A’;{%
Seoul meon?l University %m Lecture 18 - Openl\/lP 21
i MEtiEtn HE A7 s

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Single Construct (cont’d)

#include <stdio.h>
void workl() {}
void work2() {}
void single_ example ()
{
#pragma omp parallel
{
#pragma omp single
printf ("Beginning workl.\n");
workl () ;
#pragma omp single
printf ("Finishing workl.\n") ;
#pragma omp single nowait
printf ("Finished workl and beginning work2.\n");

work2 () ;

Lecture 18 - OpenMP 22

Seoul National University »
MethEm Hs oy W

THUNDER Research Group ;&fﬁ‘%?

SN

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Combined Work-sharing Constructs

 Shortcuts for specifying a work-sharing construct nested
immediately inside a parallel construct

« The semantics of these directives are identical to that of explicitly
specifying a parallel construct containing one work-sharing

construct and no other statements

#pragma omp parallel for [clause[[,] clause] ...] new-line
for-loop

#pragma omp parallel sections [clause[[,] clause] ...] new-line

{

[#pragma omp section new-line]
structured-block

[#pragma omp section new-line
structured-block]

THUNDER Research Group %.4-“;”;:%
Seoul National University ‘&{EM M Lecture 18 - OpenM p .
METHEa HE APy *ﬁ;l;_LL%xL ~

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

Combined Work-sharing Constructs (cont’d)

void simple(int n, float *a, float *Db)

{
int 1i;
#pragma omp parallel for
for (i =1; 1 < n; 1i++)
/* 1 is private by default */
b[i] = (a[i] + a[i-1]) / 2.0;
}

THUNDER Research Group ?ﬁ-“
Seoul National Ui %ﬁ Lecture 18 - OpenMP 24
Metistn Hs “':rla

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Reduction

reduction(op : list)

A local copy of each list variable is made and initialized depending on the op

Updates occur on the local copy

Local copies are reduced to the original global variable

Many different associative operators

¢ +/ *I T &/ |/ /\/ &&/ ||

double sum = 0.0, A[MAX];
int 1i;

#pragma omp parallel for reduction (+:sum)
for (i = 0; i < MAX; i++) {
sum + = A[i];

}

ave = sum/MAX;

THUNDER Research Group %.4-“;”;:%
Seoul National University ‘&{EM M Lecture 18 - OpenM p .
HETHED HE A7 *ﬁ;l;_LL%xL ~

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Task Construct (version 3.0)

« Defines an explicit task
 Use the task construct when you want to identify a block of code
to be executed in parallel with the code outside the task region
 Useful for parallelizing irregular algorithms such as pointer chasing or

recursive algorithms for which other OpenMP work-sharing

constructs are inadequate

* The data sharing default for tasks is firstprivate

#pragma omp task [clause[[,] clause] ...] new-line
structured-block

THUNDER Research Group ‘,}%“ K
si: |Er; :_' :gq:’l % Lecture 18 - OpenMP 26
= us E

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

\ Task Construct (cont'd)

* The encountering thread may immediately execute the task, or

defer its execution

* In the latter case, any thread in the team may be assigned the task

« Completion of the task can be guaranteed using task synchronization

constructs

THUNDER Research Group g.!f_f“’;la
Seo:l N?tlon?lgnlverirlty @%@ Lecture 18 - Open MP 27
HETs HS A i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Task Construct (cont’d)

struct node {
struct node *left;
struct node *right;

};

extern void process(struct node *);

void traverse(struct node *p)
{
if (p—->left)
#pragma omp task // p is firstprivate by default
traverse (p->left);
if (p->right)
#pragma omp task // p is firstprivate by default
traverse (p->right) ;

#fpragma omp taskwait

process(p) ;

THUNDER Research Group 4% A’;{o“
Seoul National University ‘\‘;’%‘
MethEm Hs oy W

Lecture 18 - OpenMP 28

S

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Taskyield Construct

 Specifies that the current task can be suspended in favor of

execution of a different task

#pragma omp taskyield new-line

THUNDER Research Group 4 A’;{%
Seoul National University v p M -
STt N ey %E&Eg Lecture 18 - OpenMP 29

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Taskyield Construct (cont’d)

#include <omp.h>

void something useful (void);

void something critical (wvoid);

void foo (omp lock t * lock, int n)

{

int i;

for (i =0; 1i < n; i++)

#pragma omp task

{
something useful();
while ('omp_test lock(lock)) {

#pragma omp taskyield

}
something critical();

omp_unset lock(lock);

THUNDER Research Group 4% A’;{o“
Seoul National University ‘\‘;’%‘
MethEm Hs oy W

Lecture 18 - OpenMP 30

S

4190.414A
Multicore Computing

Spring??i;
Master Construct
 Specifies a structured block that is executed by the master thread
of the team
#pragma omp master new-line
structured-block
;iﬁ%% Lecture 18 - OpenMP 31

i
v
X

THUNDER Research Group
Seoul National University
MECHen »E A4

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Master Construct (cont’d)

#include <stdio.h>
extern float average(float,float, float);

void master example(float* x, float* xold, int n, float tol)
{

int ¢, i, toobig;

float error, y;

c =0;
#fpragma omp parallel
{

do{
#pragma omp for private (i)
for(i =1; i < n-1; ++i){
xold[i] = x[i];
}
#pragma omp single
{
toobig = 0;
#pragma omp for private(i,y,error) reduction (+:toobig)
for(i =1; i < n-1; ++1i){
y = x[1];
x[i] = average(xold[i-1], x[i], xold[i+1])

error =y - x[i];
if(error > tol || error < -tol) ++toobig;

#pragma omp master

++c;
printf("iteration %d, toobig=%d\n", c, toobig);

}
}while(toobig > 0);

THUNDER Research Group 4% '“'{0“
Seoul National University ‘\‘;’%‘
MethEm Hs oy W

Lecture 18 - OpenMP 32

S

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Critical Construct

* Restricts execution of the associated structured block to a single

thread at a time

#pragma omp critical [(name)] new-line
structured-block

THUNDER Research Group iﬁf‘%??q
Seoul National University v p M -
STt N ey %E&Eg Lecture 18 - OpenMP 33

4190.414A
Multicore Computing

Spring 2021
© Jagjin Lee
Critical Construct (cont’d)
J
int dequeue(float *a);
void work (int i, float *a);
void critical example (float *x, float *y)
{
int ix next, iy next;
#pragma omp parallel shared(x, y) private(ix next, iy next)
{
#pragma omp critical (xaxis)
ix next = dequeue (x);
work (ix next, x);
#pragma omp critical (yaxis)
iy next = dequeue(y) ;
work (iy_next, y);
}
}
THUNDER Research Group g.!f_f“’;la’
Seoul National University %: % Lecture 18 - Openl\/IP 34

Mgthstm 3S 74 o

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Barrier Construct

« Specifies an explicit barrier at the point at which the construct

appears

#pragma omp barrier new-line

THUNDER Research Group ?;&‘f‘%?:
Seoul National University V.» M -
STt N ey %E&E% Lecture 18 - OpenMP 35

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Taskwait Construct

 Specifies a wait on the completion of child tasks of the current

task

#pragma omp taskwait new-line

THUNDER Research Group ?;&‘f‘%?:
Seoul National University V.» M -
STt N ey %E&E% Lecture 18 - OpenMP 36

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Atomic Construct

 Ensures that a specific storage location is accessed atomically,
rather than exposing it to the possibility of multiple, simultaneous

reading and writing threads that may result in indeterminate

values

#pragma omp atomic [read | write | update | capture] new-line
expression-stmt

#pragma omp atomic capture new-line
structured-block

THUNDER Research Group 4% “’;{03’
Seoul National University ‘gh% ‘\'y Lecture 18 - OpenM p .
HEohsta HE A7 *ﬁ;lj_&% ~

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Atomic Construct (cont’d)

float workl (int i) {

return 1.0 * i;

float work2 (int i) {

return 2.0 * i;

void atomic_example (float *x, float *y, int *index, int n) {
int 1i;
#pragma omp parallel for shared(x, y, index, n)
for (i=0; i<n; i++) {
#pragma omp atomic update
xX[index[i]] += workl (i) ;

y[i] += work2 (i) ;

Seoul National University »
MethEm Hs oy W

THUNDER Research Group :&éﬁ“’;{o‘
% Lecture 18 - OpenMP 38

S

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Ordered Construct

 Specifies a structured block in a loop region that will be executed
in the order of the loop iterations

 This sequentializes and orders the code within an ordered region
while allowing code outside the region to run in parallel

* The ordered clause must be present on the loop construct if any
ordered region ever binds to a loop region arising from the loop

construct

#pragma omp ordered new-line
structured-block

THUNDER Research Group 4% ";{03:
Seoul National University ‘\‘;’h% Lecture 18 - Open MP i,
Hgofstn 1 A7y ﬁ;lrﬁ !

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Ordered Construct (cont'd)

#include <stdio.h>
void work (int k) {
#fpragma omp ordered
printf (" %d\n", k);

void ordered example(int 1b, int ub, int stride) {

int i;

#fpragma omp parallel for ordered schedule (dynamic)
for (i=1lb; i<ub; i+=stride)

work (i) ;

int main() {
ordered_example (0, 100, 5);

return 0;

THUNDER Research Group 4% A’;{o“
Seoul National University ‘\‘;’%‘
MethEm Hs oy W

Lecture 18 - OpenMP 40

S

4190.414A
Multicore Computing
Spring 2021

Ordered Construct (cont'd) |

#pragma omp parallel for private (myval) ordered
{

for (i=1; i<=n; i++) {
myval = do lots of work(i);
#pragma omp ordered
{

printf ("$d $d\n", i, myval);

THUNDER Research Group ?ﬁ-“
Seoul National Ui %ﬁ Lecture 18 - OpenMP 41
Metistn Hs “':rla

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

- OpenMP Memory Consistency

« All OpenMP threads have access to a place to store and to

retrieve variables, called the memory

* |In addition, each thread is allowed to have its own temporary view

of the memory

THUNDER Research Group g.!f_f“’;la
Seo:l N?tlon?lgnlverirlty 4 % Lecture 18 - OpenM P 42
HECHstm #E A7 i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

OpenMP Memory Consistency (cont’d)

* Relaxed consistency

* Similar to weak ordering
A thread’s temporary view of memory is not required to be

consistent with memory at all times
* A value written to a variable can remain in the thread’s temporary
view until it is forced to memory at a later time
* Likewise, a read from a variable may retrieve the value from the

thread’s temporary view, unless it is forced to read from memory

* The OpenMP flush operation enforces consistency between the

temporary view and memory

* Synchronization operation in weak ordering

THUNDER Research Group g.!f_f“’;@
Seo:l N?tlon?lgnlverirlty @%@ Lecture 18 - Open MP 43
HETs HS A e

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Flush Construct

« Executes the OpenMP flush operation
 This operation makes a thread's temporary view of memory
consistent with memory, and enforces an order on the memory

operations of the variables explicitly specified or implied

#pragma omp flush [(list)] new-line

THUNDER Research Group “&-“ ‘
Seoul National University %@ Lecture 18 - OpenMP 44
. MEchstn HE 7 o

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Producer and Consumer

flag = 0;
#pragma omp parallel
{

#pragma omp section

produce () ;
#pragma omp flush

flag = 1;
#pragma omp flush (flag)
}

#pragma omp section

while (!'flag) ({
#pragma omp flush (flag)

#pragma omp flush
consume () ;

THUNDER Research Group ?ﬁ-“ TR
Seoul National Unive irlty E% Lecture 18 - OpenMP 45
MEtiEtn HE A7)xL

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Environment Variables

N J

« OMP_NUM_THREADS

+ Sets the number of threads to use during execution
* When dynamic adjustment of the number of threads is enabled, the

value of this environment variable is the maximum number of threads to

use

* export OMP_NUM_THREADS=16

« OMP_SCHEDULE
* Applies only to for and parallel for directives that have the schedule type

auto

 Sets schedule type and chunk size for all such loops

* export OMP_SCHEDULE=GUIDED, 4

THUNDER Research Group gé
Seoul National U ﬁ%& Lecture 18 - OpenMP 46
MetiEtn ds q:ll'a

