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~ Virtual Memory

« An abstraction of main memory by the operating system

* Provide each process with a large and uniform address space
* The size of the address space is bigger than that of main memory
* Protect the address space of each process from corruption by other
processes

* Treat main memory as a cache of the permanent secondary storage

(hard disk)
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MMU and Pages

« Each byte in main memory has a unique physical address (PA)

« The CPU generates a virtual address (VA) to access the main memory

* The memory management unit (MMU) translates the virtual address to the
corresponding physical address using a look-up table (page table) stored in
main memory

» The virtual address space is divided into uniform virtual pages
« Each page is indexed by its virtual page number
« The physical memory is divided into uniform physical pages (page frames)

« Each frame is indexed by its page frame number =

I
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Page Tables

Map virtual pages to physical pages
« An array of page table entries (PTE)
« A PTE consists of a valid bit and an n-bit address field (physical page frame number

or secondary storage address) in addition to other page attributes
« The MMU reads the page table when it converts VA to PA
« The OS (page fault handler) takes care of maintaining the contents of the
page table and transferring pages between main memory and secondary
storage
* Swapping (paging)
« The activity of transferring a page between the secondary storage and main

memory
« Demand paging

«  Wait until the last moment to swap in a page when a miss (page fault) occurs
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Address Translation

* Three types of virtual pages
* Unallocated: Pages that have not yet been allocated by the VM (no space on secondary storage)
« Cached: Allocated pages that are currently cached in main memory
* Uncached: Allocated pages that are not cached in main memory (reside on secondary storage)

« Asingle page table for the entire address space is large
*  32-bit address space, 4KB pages, and 4B PTEs result in 4MB page table resident in main memory
* Use a hierarchy of page tables and demand paging for the tables

- Virtual page number Virtual page offset | Virtual address

. . Page frame number
Vel or disk address
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Page Replacement Policies

 LRU
FIFO

Second chance

Clock

« A bit (R) that indicates whether the page is referenced or not

* When a page is first loaded in memory, R =0
* When the page is referenced, R = 1
« Maintain a circular list of pages in memory
* The hand points to the current page in the list
* When it is time to replace a page, the first frame with R =0
encountered is replaced
* During the search for replacement, each reference bit set to 1

is changed to 0
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« Every time the CPU generates a virtual address, the MMU must refer to the
page table for address translation
* High overhead
* A small, virtually addressed cache where each line holds a block consisting of
a single PTE
* Has a high degree of associativity
* Micro-TLB
« Asmall TLB placed over the main TLB to boost the speed of address translation for

cache accesses
e The main TLB handles micro-TLB misses

e Smaller number of entries than the main TLB

Virtual page number

=]
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TLB tag TLB set index | Virtual page offset
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~ Caches and Virtual Memory

* Virtually-addressed caches vs. physically-addressed caches
* Which address do we send to the cache?
* Virtually-addressed cache: faster (no address translation) but security
issues (requires cache flushing by the OS on context switching)
* Physically-addressed cache: slower but no security issues (no OS
intervention)
* Four possible combinations
* Physically indexed, physically tagged
 Physically indexed, virtually tagged

* Virtually indexed, physically tagged
* Virtually indexed, virtually tagged
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Virtually Indexed, Virtually Tagged

N\ J
« Address translation occurs on a cache miss
« TLB (address translation) is not in the critical path

Virtual address
Tag Setindex | Offset Tag array Data array
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~ Virtually Indexed, Physically Tagged

« Common in real systems

The address translation can happen at the same time as the cache

indexing

TLB is not in the critical path

Much faster than physically-indexed caches

Virtual address
Tag Set index Offset

Tag array Data array

TLB

Tag | Setindex | Offset ‘

Physical address
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Physically Indexed, Virtually Tagged

J
* Never used
* No OS intervention for cache management
* TLB is in the critical path
Virtual address
Tag Setindex | Offset Tag array Data array
- !t 1 1 (1 1 | |

TLB
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* No OS intervention for cache management
* TLB is in the critical path
Virtual address

Tag | Setindex | Offset Tag array Data array
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TLB
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Physical address
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Virtual Addressing vs. Physical Addressing
Virtually indexed, virtually tagged Virtually indexed, physically tagged
. Address translation occurs on a cache miss . Common in real systems
* TLB (address translation) is not in the critical |. The address translation can happen at the same
path time as the cache indexing
* TLB is not in the critical path
Virual address . Much faster than physically-indexed caches
| Tag | Setindex | Offset Tag array Data array Virtual address
| Tag I Set index I Offset | Tag array Data array

' ' | TLB |
: — = | |
| Tag l Set index I Offset I I -
| $

Physical address

Physically indexed, virtually tagged Physically indexed, physically tagged
. Never used . No OS intervention for cache management
. No OS intervention for cache management . TLB is in the critical path

. TLB is in the critical path

Virtual address Virtual address
| Tag | Setindex | Offset | Tag array Data array
I Tag I Setindex | Offset | Tag array Data array
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