4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Lecture 26

Classical Optimizations

0| 242!
METjatn 2B I o

http://aces.snu.ac.kr

THUNDER Research Group Sk
Seoul National U ‘\‘;’51 %
MetiEtn ds “'-_rl

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Optimization

Hardly ever possible to guarantee optimality

Not even always an improvement

Optimizing for the average case

Code optimization is an important phase in production compilers

Get your code right first, then optimize it

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 26 - Classical Optimizations 2
AgTHER #S 2P

S

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Rules for Optimization

In general, 80% percent of a program'’s execution time is spent

executing 20% of the code
* 90%/10% for performance-hungry programs

« Spend your time optimizing the important 10-20% of your
program

« Optimize the common case even at the cost of making the
uncommon case slower

* The best and most important way of optimizing a program is using

good algorithms

THUNDER Research Group gé
Seoul National U ﬁ%& Lecture 26 - Classical Optimizations 3
e

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Code Optimization

Peephole optimization

« Performed over a very small set of instructions

Local code optimization

* Code improvement with in a basic block

Global code optimization
* Improvements take into account what happens across basic blocks

* Intra-procedural

Program level

* Inter-procedural

An optimization must preserve the semantics of the original

program

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 26 - Classical Optimizations 4
AgTHER #S 2P

SN

Constant Folding

 Evaluate expressions at compile-time

 Floating point/integer precision

* Must agree with run-time precision

« E.g., 1.0/3.01=0.3333

« Handling arithmetic exceptions

» E.g., division by 0

const float pi =
3.1416;

float v, r;

v=4/3 *pi *r *xr * r;

THUNDER Research Group 4% A’;{o?
y Seoul National University ‘g E ‘:'j
Agchetm 1S o4 *}_lsz_f%

const float pi =
3.1416;

float v, r;

v =4.1888 * r * r * r;

Lecture 26 - Classical Optimizations

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Constant Folding and Propagation

Constant folding together with constant propagation

Constant propagation
« Given an assignment x = c for a variable x and a constant c, replace later
uses of x with uses of ¢ as long as intervening assignments have not

changed the value of x

Important for RISC architecture because all RISC architectures
provide instructions that take a small integer constant as an operand
(more efficient code)

* Saves registers

x = 24;
X = x + 24;

_ THUNDER Research Group 7&“ TR
Seoul National University Lecture 26 - Classical Optimizations 6
Mgthstm 3S 74 JAXL

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Constant Folding and Propagation (cont’d)

THUNDER Research Group A - 03'
Seoul National University %@% Y Lecture 26 - Classical Optimizations 7
MEchstn HE 7 o

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Constant Folding and Propagation (cont’d)

* In general, data flow analysis is required

e 7is unknown below

x = 24; x = 24;

y =x + 1; y = 25;

while (x < z) { while (x < z) {
X =x + 2; X = x + 2;

THUNDE%RQSﬁargh Group :\;&‘i’;l% ' -
Seoul National University ¢ B} ¥ Lecture 26 - Classical Optimizations 8
Mgt HE Ay Wiy

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

~ Algebraic Simplifications

« More general form of constant folding
» Algebraic properties of operators or particular operator-operand

combinations are exploited to simplify expressions

* For example,
e x+0=2x,x-0=>x
e x*1=>x, x/1=>x
* x*0=0
* O—x>-xX
* X2 =X%*X

* 2" X=Xx+X

THUNDER Research Group 4% A’;{o“
Seoul National University ‘\‘;’b‘%

P iy y, Lecture 26 - Classical Optimizations 9
EHISLE TS CTE

S

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

~ Strength Reduction

* Replace expensive operations with less expensive operations

* For example,

e X=X *8=23x=x<<3

THUNDER Research Group ;ﬁé""’;{o"
Seoul National University *ﬁ%ﬁ Lecture 26 - Classical Optimizations 10
METfsta HE @Ry o

4190.414A

Multicore Computing
Spring 2021
© Jagjin Lee

\ Algebraic Reassociation

« Using some specific algebraic properties (associativity,
commutativity, and distributivity) to divide an expression into parts

that are constant, loop-invariant, and variable

* For example,
c (i) FGM-P+G-P+(-)=4"i-47]
* What if i = 230 = 0x40000000 and j = 230 — 1 = Ox3fffffff

THUNDER Research Group gé
Seoul National U ﬁ%& Lecture 26 - Classical Optimizations 11
e

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Unreachable Code Elimination

 Unreachable code is the code that can never be executed

because there exists no control flow path to the code from the

rest of the program

int foo(int x, int y)

{
int z;
return x * y;
zZ =x *y;

}

THUNDER Research Group 4 *:{03:
Seoul National University %@% Lecture 26 - Classical Optimizations 12
AETHED HE 2P i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Dead Code Elimination

* Removes dead code
» Avariable is dead if it is not used on any path from the location in the code where it is defined
to the exit point of the routine
* Eliminates assignments to dead variables
* Dead store elimination

 Dead code

« Code whose results are never used in any useful computation

* Results do not affect on the result of the program

» Useful computation

« Output statements, input statements, control-flow statements, and their required statements

e Cleaner code

N K X
I
N oK
+
SN

I
o

y
z

*
N

THUNDER Research Group ;ﬁé&?
Seoul National University ﬁ%iﬁ Lecture 26 - Classical Optimizations 13
S

Mgtistn ds A7y U

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Common Subexpression Elimination

* Avoid evaluating the same expression more than once

» An occurrence of an expression in a program is a common subexpression if there is
another occurrence of the expression whose evaluation always precedes this one in
execution order and if the operands of the expression remain unchanged between
the two evaluations

* Requires data-flow analysis

£

%

Ny
Seoul National University M 4
Mgchsta B A7l %

THUNDER Research Group J43
] % Lecture 26 - Classical Optimizations 14

W

Copy Propagation

« Given an assignment x = y for some variables x and y, replaces
later uses of x with uses of y, as long as intervening instructions
have not changed the value of either x ory

* Requires data-flow analysis

e Enables other transformations

5)).(&

THUNDER Research Group 4 A’;{%
, Seoul National University “’jﬁ% Lecture 26 - Classical Optimizations
. PRI T IR

4190.414A

Multicore Computing

15

Spring 2021
© Jaejin Lee

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Forward Expression Substitution

* Instead of replacing an expression evaluation by a copy operation,
it replaces a copy by reevaluation of the expression
* The inverse of common-subexpression elimination

* Reduces register pressure

c =t C = b+2

3 registers (B1—B2) 2 registers (B1—B2)

THUNDER Research Group 4 A’;{%
Seoul National University ¢ {13 Lecture 26 - Classical Optimizations 16
, METHStR HE B4 e

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Loop-invariant Code

« Computations in a loop that produce the same value on every iteration of the

loop
* An instruction is loop invariant if, for each of its operands,
* The operand is constant,
« All definitions that reach this use of the operand are located outside the loop, or
« There is exactly one definition of the operand that reaches the instruction and that

definition is an instruction inside the loop that is itself loop-invariant

for (i = 0; i < 100; i++) {
L=i%* (n+ 2);
for (§ = i; j < 100; Jj++) {
A[i][3j] = 100*n + 10*L + j;
}

THUNDER Research Group 4 *:{03:
Seoul National University %@% Lecture 26 - Classical Optimizations 17
: AETHED HE 2P i

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Computing Loop Invariants

1. Mark as loop invariant those instructions whose operands are all
either constant or have all their reaching definitions outside the
loop

2. Mark as loop invariant all those instructions not previously so
marked all of whose operands either are constant, have all their
reaching definitions outside the loop, or have exactly one
reaching definition, and that definition is an instruction in the
loop marked invariant

3. Repeat step 2 above until no instruction is newly marked as

Invariant in an iteration

THUNDER Research Group g.!f_f“’;@
Seoul National University -~ ¢4 % Lecture 26 - Classical Optimizations 18
ACisE HE oA

DL

Loop-invariant Code Motion

* Moves the loop-invariant code out of the loop

for (i = 0; i < 100; i++) {
L=3i%* (n+ 2);
for (§ = i; j < 100; Jj++) {
A[i][j] = 100*n + 10*L + j;

}

tl 10 * (n + 2);
t2 = 100 * n;
for (1 = 0; 1 < 100; i++) {
t3 = t2 + i*tl;
for (j = 1i; j < 100; j++) {
A[i][]] t3 + j;
}

i~

}

THUNDER Research Group gg‘ IR '03;‘
Seoul National Unive Y, @M" Lecture 26 - Classical Optimizations
s g ,d_bx@%

4190.414A

Multicore Computing
Spring 2021
© Jaejin Lee

19

4190.414A
Multicore Computing

Spring 2021
. . . © Jaejin Lee
Loop-invariant Code Motion (contd.)
entry entry
J y
b=2 b 2
i=1 i=1
a=b+1
h 4 c =2
tl = a< 2
1 i > 100
=0 i mod
= -c d=a+d
=1+ a e=1+4d
1 1
tl
exit
THUNDER Research Group i«,‘;’-‘f’;lo:‘,:
Si;’é';;;:;";;“gzzy v‘;ﬁ& Lecture 26 - Classical Optimizations 20

I DE

4190.414A

Multicore Computing
Spring 2021

© Jagjin Lee

Function Inlining

Also called procedure integration

Replaces a function call with the body of the function

By instantiating the body with the actual parameters and copying the

result to the call site

Inlined functions should be small, or size of code might blow up

Be careful with recursion

Avoids overhead of function/procedure call

S

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 26 - Classical Optimizations 21
ACisE HE oA

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Function Inlining (cont’d)

int foo (int x)

return (x + 22) * 3;

} a= ((y +3) +22) * 3;
b= ((z * 5) + 22) * 3;
a = foo(y + 3);
b = foo(z * 5);
/ ATHEa 3 S ‘%&g Lecture 26 - Classical Optimizations 22

4190.414A

Multicore Computing
Spring 2021
© Jaejin Lee

Function Cloning

 Create specialized code for a function for different calling parameters

 Specialize functions such that certain optimizations are feasible

int foo (int x, int y, int z) {
if (z < 3) return x * y;

int foo (int x, int y, int z) { return x + y;
if (z < 3) return x * y; }
return x + y;
} int foo clone (int x, int y) {
o return x * y;
foo(a, b, 1); }
foo(a, b, k); foo clone(a, b);
foo(a, b, 1); foo(a, b, k);

foo clone(a, b);

T

SLERP
Tﬁuyguﬁﬂgigaurgyeggyoup g‘ﬂ‘—% Lecture 26 - Classical Optimizations 23
MEtsE ¥E ey deJg P

4190.414A

Multicore Computing
Spring 2021

© Jaejin Lee

Tail Recursion Elimination

e Tail recursion

* No computation follows recursive call

* Efficiently implemented
* No stack is needed
* Most of the frame of the current procedure is not needed any more,

and it can be replaced by the frame of the tail call

int ged (int a, int b) {
if (a == b) return a;
else if (a > b) return ged (a - b, b);
else return gecd (a, b - a);

THUNDER Research Group 4 A’;{%
Seoul National University -~ ¢ S ¥ Lecture 26 - Classical Optimizations 24
MEHED HE A7 e

