#include "matmul.h" #include "util.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 int num_devices = 0; __global__ void matmul_kernel(float *A, float *B, float *C, int M, int N, int K) { int i = blockDim.x * blockIdx.x + threadIdx.x; int j = blockDim.y * blockIdx.y + threadIdx.y; if (i >= M || j >= N) return; C[i * N + j] = 0; for (int k = 0; k < K; ++k) { C[i * N + j] += A[i * K + k] * B[k * N + j]; } } static int mpi_rank, mpi_world_size; // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void matmul(const float *A, const float *B, float *C, int M, int N, int K) { // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaMemcpy(a_d[i], A + Mbegin[i] * K, (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyHostToDevice)); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice)); } // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { dim3 blockDim(1, 1, 1); dim3 gridDim(Mend[i] - Mbegin[i], N, 1); CUDA_CALL(cudaSetDevice(i)); matmul_kernel<<>>(a_d[i], b_d[i], c_d[i], M, N, K); } for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaDeviceSynchronize()); } // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaMemcpy(C + Mbegin[i] * N, c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float), cudaMemcpyDeviceToHost)); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaDeviceSynchronize()); } } void matmul_initialize(int M, int N, int K) { MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); // Only root process do something if (mpi_rank == 0) { CUDA_CALL(cudaGetDeviceCount(&num_devices)); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL(cudaGetDeviceProperties(&prop, i)); // Try printing more detailed information here printf("GPU %d: %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); } Mend[num_devices - 1] = M; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaSetDevice(i)); CUDA_CALL(cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float))); CUDA_CALL(cudaMalloc(&b_d[i], K * N * sizeof(float))); CUDA_CALL(cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float))); } } } void matmul_finalize() { // Only root process do something if (mpi_rank == 0) { // Free all GPU memory for (int i = 0; i < num_devices; i++) { CUDA_CALL(cudaFree(a_d[i])); CUDA_CALL(cudaFree(b_d[i])); CUDA_CALL(cudaFree(c_d[i])); } } }