#include "mat_mul.h" #include "util.h" #include #include #include #include static float *A, *B, *C; static int M, N, K; static int num_threads; static int mpi_rank, mpi_world_size; static int num_cnt; static int min(int x, int y) { return x < y ? x : y; } //#define DEBUG (true) #define DEBUG (false) #define ITILESIZE (32) // 32 #define JTILESIZE (1024) // 1024 #define KTILESIZE (1024) // 1024 static void mat_mul_omp(int is, int ie) { // TODO: parallelize & optimize matrix multiplication // Use num_threads per node omp_set_num_threads(num_threads); //for (int ii = 0; ii < M; ii += ITILESIZE) { #pragma omp parallel for schedule(runtime) for (int ii = is; ii < ie; ii += ITILESIZE) { for (int jj = 0; jj < N; jj += JTILESIZE) { for (int kk = 0; kk < K; kk += KTILESIZE) { for (int k = kk; k < min(kk + KTILESIZE, K); k++) { for (int i = ii; i < min(ii + ITILESIZE, ie); i++) { float ar = A[i * K + k]; for (int j = jj; j < min(jj + JTILESIZE, N); j+=1) { C[i * N + j] += ar * B[k * N + j]; } // for j } // for i } // for k } // for kk } // for jj } // for ii return; } void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K, int _num_threads, int _mpi_rank, int _mpi_world_size) { A = _A, B = _B, C = _C; M = _M, N = _N, K = _K; num_threads = _num_threads, mpi_rank = _mpi_rank, mpi_world_size = _mpi_world_size; // split number for node num_cnt = (M / mpi_world_size) + ((M % mpi_world_size) > 0); int is, ie, in; MPI_Status status; // TODO: parallelize & optimize matrix multiplication on multi-node // You must allocate & initialize A, B, C for non-root processes if (mpi_rank == 0) { if (DEBUG) printf("[mat_mul %d] Start...\n", mpi_rank); // Send A,B to Others for (int r = 1; r < mpi_world_size; r++) { is = r * num_cnt; ie = min((r + 1) * num_cnt, M); in = ie - is; //MPI_Send(&A[is*K], in*K, MPI_FLOAT, r, 100, MPI_COMM_WORLD); MPI_Request reqA; MPI_Isend(&A[is*K], in*K, MPI_FLOAT, r, 100, MPI_COMM_WORLD, &reqA); if (DEBUG) printf("[mat_mul %d] Send A to %0d, %0d ~ %0d\n", mpi_rank, r, is, ie); //MPI_Send(B, K*N, MPI_FLOAT, r, 200, MPI_COMM_WORLD); MPI_Request reqB; MPI_Isend(B, K*N, MPI_FLOAT, r, 200, MPI_COMM_WORLD, &reqB); if (DEBUG) printf("[mat_mul %d] Send B to %0d\n", mpi_rank, r); } // Process mat_mul_omp(0, num_cnt); // for rank 0 if (DEBUG) printf("[mat_mul %d] Process done (%0.2f)\n", mpi_rank, C[0]); // Receive C from Others for (int r = 1; r < mpi_world_size; r++) { is = r * num_cnt; ie = min((r + 1) * num_cnt, M); in = ie - is; MPI_Recv(&C[is*N], in*N, MPI_FLOAT, r, 300, MPI_COMM_WORLD, &status); if (DEBUG) printf("[mat_mul %d] Receive C : %0d, %0d ~ %0d\n", mpi_rank, r, is, ie); } } else { if (DEBUG) printf("[mat_mul %d] Start...\n", mpi_rank); is = mpi_rank * num_cnt; ie = min((mpi_rank + 1) * num_cnt, M); in = ie - is; // Memory allocation alloc_mat(&A, in, K); alloc_mat(&B, K, N); alloc_mat(&C, in, N); zero_mat(C, in, N); // Recieve A from Rank0 MPI_Recv(A, in*K, MPI_FLOAT, 0, 100, MPI_COMM_WORLD, &status); if (DEBUG) printf("[mat_mul %d] Receive A\n", mpi_rank); // Recieve B from Rank0 MPI_Recv(B, K*N, MPI_FLOAT, 0, 200, MPI_COMM_WORLD, &status); if (DEBUG) printf("[mat_mul %d] Receive B\n", mpi_rank); // Process mat_mul_omp(0, in); if (DEBUG) printf("[mat_mul %d] Process done (%0.2f)\n", mpi_rank, C[0]); // Send C to Rank0 MPI_Send(C, in*N, MPI_FLOAT, 0, 300, MPI_COMM_WORLD); if (DEBUG) printf("[mat_mul %d] Send C\n", mpi_rank); } // FIXME: for now, only root process runs the matrix multiplication. //if (mpi_rank == 0) // mat_mul_omp(); }