#include "mat_mul.h" #include "util.h" #include #include #include #define BLOCKSIZE_I 20 #define BLOCKSIZE_J 1024 #define BLOCKSIZE_K 512 #define FROM_MASTER 1 #define FROM_SLAVE 2 static float *A, *B, *C; static int M, N, K; static int num_threads; static int mpi_rank, mpi_world_size; static void mat_mul_omp(int size_of_M) { // TODO: parallelize & optimize matrix multiplication // Use num_threads per node int temp_k; int temp_i; int temp_j; #pragma omp parallel for num_threads(num_threads) private(temp_i, temp_j, temp_k) shared(A, B, C, K, N, size_of_M) for (int ii = 0; ii < size_of_M; ii += BLOCKSIZE_I) { if (ii+BLOCKSIZE_I <= size_of_M) temp_i = ii+BLOCKSIZE_I; else temp_i = size_of_M; for (int jj = 0; jj < N; jj += BLOCKSIZE_J) { if (jj+BLOCKSIZE_J <= N) temp_j = jj+BLOCKSIZE_J; else temp_j = N; for (int kk = 0; kk < K; kk += BLOCKSIZE_K) { if (kk+BLOCKSIZE_K <= K) temp_k = kk+BLOCKSIZE_K; else temp_k = K; for (int k = kk; k < temp_k; k++) { for (int i = ii; i < temp_i; i++) { float ar = A[i * K + k]; for (int j = jj; j < temp_j; j++) { C[i * N + j] += ar * B[k * N + j]; } } } } } } } void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K, int _num_threads, int _mpi_rank, int _mpi_world_size) { A = _A, B = _B, C = _C; M = _M, N = _N, K = _K; num_threads = _num_threads, mpi_rank = _mpi_rank, mpi_world_size = _mpi_world_size; MPI_Status status; MPI_Request request; int divided_M = M / mpi_world_size; int modular_M = M % mpi_world_size; int stride_M[4]; int offset[4]; int stride; // TODO: parallelize & optimize matrix multiplication on multi-node // You must allocate & initialize A, B, C for non-root processes if (mpi_rank != 0) { alloc_mat(&A, divided_M+1, K); alloc_mat(&B, K, N); alloc_mat(&C, divided_M+1, N); zero_mat(C, divided_M+1, N); } MPI_Bcast (B, K*N, MPI_FLOAT, 0, MPI_COMM_WORLD); if (mpi_rank == 0) { for (int i = 1; i < mpi_world_size; i++) { if (i <= modular_M) stride_M[i] = divided_M + 1; else stride_M[i] = divided_M; offset[1] = divided_M; if (i > 1) offset[i] = offset[i-1] + stride_M[i-1]; } for (int i = 1; i < mpi_world_size; i++) { MPI_Isend (&stride_M[i], 1, MPI_INT, i, FROM_MASTER, MPI_COMM_WORLD, &request); MPI_Isend (&A[offset[i]*K], stride_M[i]*K, MPI_FLOAT, i, FROM_MASTER, MPI_COMM_WORLD, &request); } mat_mul_omp(divided_M); for (int i = 1; i < mpi_world_size; i++) { MPI_Recv (&stride_M[i], 1, MPI_INT, i, FROM_SLAVE, MPI_COMM_WORLD, &status); MPI_Recv (&C[offset[i]*N], stride_M[i]*N, MPI_FLOAT, i, FROM_SLAVE, MPI_COMM_WORLD, &status); } } // FIXME: for now, only root process runs the matrix multiplication. if (mpi_rank != 0) { MPI_Recv (&stride, 1, MPI_INT, 0, FROM_MASTER, MPI_COMM_WORLD, &status); MPI_Recv (A, stride*K, MPI_FLOAT, 0, FROM_MASTER, MPI_COMM_WORLD, &status); mat_mul_omp(stride); MPI_Send (&stride, 1, MPI_INT, 0, FROM_SLAVE, MPI_COMM_WORLD); MPI_Send (C, stride*N, MPI_FLOAT, 0, FROM_SLAVE, MPI_COMM_WORLD); } }