#include "mat_mul.h" #include #include #include #include #include #include "util.h" #define BLOCK_SIZE (45) #define UNROLL_SIZE (8) #define MAX_NODE (8) #define MIN(a,b) ((a < b) ? (a) : (b)) #define MATRIX_SEND_DATA_MSG_ID 1000 #define MATRIX_SEND_RESULT_MSG_ID 1001 #define ITILESIZE (32) #define JTILESIZE (1024) #define KTILESIZE (1024) #define likely(x) __builtin_expect((x),1) #define unlikely(x) __builtin_expect((x),0) static float *A, *B, *C; static int M, N, K; static int num_threads; static int mpi_rank, mpi_world_size; static void mat_mul_omp(int startM, int endM) { // TODO: parallelize & optimize matrix multiplication int bs = BLOCK_SIZE; register float Aik; register int kk, i, k, j; for (kk = 0; kk < K; kk += bs) { #pragma omp parallel for schedule(static) num_threads(num_threads) for (i = startM; i < endM; ++i) { for (k = kk; k < MIN(kk + bs, K); ++k) { Aik = A[i * K + k]; for (j = 0; j < N; j++ ) { C[i * N + j] += Aik * B[k * N + j]; } } } } } static void mat_mul_omp32(int startM, int endM) { #pragma omp parallel for schedule(static) num_threads(num_threads) for (int i = startM; i < endM; i += ITILESIZE) { for (int j = 0; j < N; j += JTILESIZE) { for (int k = 0; k < K; k += KTILESIZE) { for (int kk = k; kk < k + KTILESIZE; kk+=8) { for (int ii = i; ii < i + ITILESIZE; ii++) { __m256 a0 = _mm256_set1_ps(A[(ii+0)*K+(kk+0)]); __m256 a1 = _mm256_set1_ps(A[(ii+0)*K+(kk+1)]); __m256 a2 = _mm256_set1_ps(A[(ii+0)*K+(kk+2)]); __m256 a3 = _mm256_set1_ps(A[(ii+0)*K+(kk+3)]); __m256 a4 = _mm256_set1_ps(A[(ii+0)*K+(kk+4)]); __m256 a5 = _mm256_set1_ps(A[(ii+0)*K+(kk+5)]); __m256 a6 = _mm256_set1_ps(A[(ii+0)*K+(kk+6)]); __m256 a7 = _mm256_set1_ps(A[(ii+0)*K+(kk+7)]); for (int jj = j; jj < j + JTILESIZE; jj+=16) { __m256 c0 = _mm256_load_ps(&C[(ii+0) * N + jj]); __m256 b0 = _mm256_load_ps(&B[(kk+0) * N + jj]); __m256 b1 = _mm256_load_ps(&B[(kk+1) * N + jj]); __m256 b2 = _mm256_load_ps(&B[(kk+2) * N + jj]); __m256 b3 = _mm256_load_ps(&B[(kk+3) * N + jj]); __m256 b4 = _mm256_load_ps(&B[(kk+4) * N + jj]); __m256 b5 = _mm256_load_ps(&B[(kk+5) * N + jj]); __m256 b6 = _mm256_load_ps(&B[(kk+6) * N + jj]); __m256 b7 = _mm256_load_ps(&B[(kk+7) * N + jj]); c0 = _mm256_fmadd_ps(a0, b0, c0); c0 = _mm256_fmadd_ps(a1, b1, c0); c0 = _mm256_fmadd_ps(a2, b2, c0); c0 = _mm256_fmadd_ps(a3, b3, c0); c0 = _mm256_fmadd_ps(a4, b4, c0); c0 = _mm256_fmadd_ps(a5, b5, c0); c0 = _mm256_fmadd_ps(a6, b6, c0); c0 = _mm256_fmadd_ps(a7, b7, c0); __m256 d0 = _mm256_load_ps(&C[(ii+0) * N + jj+8]); __m256 e0 = _mm256_load_ps(&B[(kk+0) * N + jj+8]); __m256 e1 = _mm256_load_ps(&B[(kk+1) * N + jj+8]); __m256 e2 = _mm256_load_ps(&B[(kk+2) * N + jj+8]); __m256 e3 = _mm256_load_ps(&B[(kk+3) * N + jj+8]); __m256 e4 = _mm256_load_ps(&B[(kk+4) * N + jj+8]); __m256 e5 = _mm256_load_ps(&B[(kk+5) * N + jj+8]); __m256 e6 = _mm256_load_ps(&B[(kk+6) * N + jj+8]); __m256 e7 = _mm256_load_ps(&B[(kk+7) * N + jj+8]); d0 = _mm256_fmadd_ps(a0, e0, d0); d0 = _mm256_fmadd_ps(a1, e1, d0); d0 = _mm256_fmadd_ps(a2, e2, d0); d0 = _mm256_fmadd_ps(a3, e3, d0); d0 = _mm256_fmadd_ps(a4, e4, d0); d0 = _mm256_fmadd_ps(a5, e5, d0); d0 = _mm256_fmadd_ps(a6, e6, d0); d0 = _mm256_fmadd_ps(a7, e7, d0); _mm256_store_ps(&C[(ii+0)*N+jj], c0); _mm256_store_ps(&C[(ii+0)*N+jj+8], d0); } } } } } } } void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K, int _num_threads, int _mpi_rank, int _mpi_world_size) { A = _A, B = _B, C = _C; M = _M, N = _N, K = _K; num_threads = _num_threads, mpi_rank = _mpi_rank, mpi_world_size = _mpi_world_size; int i, slice = 0, m_size, startM, endM, is_omp32 = 0; MPI_Status status; MPI_Request req1[MAX_NODE], req2[MAX_NODE], req3[MAX_NODE], req4[MAX_NODE], req5[MAX_NODE]; int slice_idx[MAX_NODE] = {768, 768, 512, 512, 256, 256, 256, 128}, slice_start, idx; // TODO: parallelize & optimize matrix multiplication on multi-node // You must allocate & initialize A, B, C for non-root processes // FIXME: for now, only root process runs the matrix multiplication. if ((K % 1024) == 0 && (N % 1024) == 0) { is_omp32 = 1; } if (mpi_rank == 0) { if (mpi_world_size > M) { mpi_world_size = M; } slice = M / mpi_world_size; if (num_threads > slice) { num_threads = slice; } if (mpi_world_size > 1 && (mpi_world_size & 0x1) == 1 && is_omp32 && M >= 2048) { idx = mpi_world_size - 1; slice_start = (idx < MAX_NODE) ? slice_idx[idx] : slice_idx[7]; slice = M / idx; slice -= slice_start * idx; if (slice < 0) slice = 32; } // Send Matrix Information for (i = 1; i < mpi_world_size; i++) { startM = i * slice; endM = (i == mpi_world_size - 1) ? M : (i + 1) * slice; m_size = (endM - startM); MPI_Isend(&m_size, 1, MPI_INT, i, MATRIX_SEND_DATA_MSG_ID, MPI_COMM_WORLD, &req1[i]); MPI_Isend(&num_threads, 1, MPI_INT, i, MATRIX_SEND_DATA_MSG_ID, MPI_COMM_WORLD, &req2[i]); MPI_Isend(&A[startM*K], m_size*K, MPI_FLOAT, i, MATRIX_SEND_DATA_MSG_ID, MPI_COMM_WORLD, &req3[i]); MPI_Isend(&B[0], K*N, MPI_FLOAT, i, MATRIX_SEND_DATA_MSG_ID, MPI_COMM_WORLD, &req4[i]); } startM = 0; endM = slice; } else { startM = 0; MPI_Recv(&endM, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &status); m_size = endM * K; MPI_Irecv(&num_threads, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &req2[0]); alloc_mat(&A, endM, K); MPI_Irecv(&A[0], m_size, MPI_FLOAT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &req3[0]); alloc_mat(&B, K, N); MPI_Irecv(&B[0], K*N, MPI_FLOAT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &req4[0]); alloc_mat(&C, endM, N); zero_mat(C, endM, N); // wait for receiving MPI_Wait(&req2[0], &status); MPI_Wait(&req3[0], &status); MPI_Wait(&req4[0], &status); } // calculating the matrix if (is_omp32 && (endM % 32) == 0) mat_mul_omp32(startM, endM); else mat_mul_omp(startM, endM); if (mpi_rank == 0) { // wait for sending for (i = 1; i < mpi_world_size; i++) { MPI_Wait(&req1[i], &status); MPI_Wait(&req2[i], &status); MPI_Wait(&req3[i], &status); MPI_Wait(&req4[i], &status); } // receiving the result for (i = 1; i < mpi_world_size; i++) { startM = i * slice; endM = (i == mpi_world_size - 1) ? M : (i + 1) * slice; m_size = (endM - startM) * N; MPI_Irecv(&C[startM*N], m_size, MPI_FLOAT, i, MPI_ANY_TAG, MPI_COMM_WORLD, &req5[i]); } // wait for receiving for (i = 1; i < mpi_world_size; i++) { MPI_Wait(&req5[i], &status); } } else { // sending the result m_size = endM * N; MPI_Isend(&C[0], m_size, MPI_FLOAT, 0, MATRIX_SEND_RESULT_MSG_ID, MPI_COMM_WORLD, &req5[0]); MPI_Wait(&req5[0], &status); //free(A); //free(B); //free(C); } }