#include "mat_mul.h" #include #include #include "util.h" #define MAT_COPY (0) #define CHECK_ERROR(err) \ if (err != CL_SUCCESS) { \ printf("[%s:%d] OpenCL error %d\n", __FILE__, __LINE__, err); \ exit(EXIT_FAILURE); \ } #define ALIGN_UP(_X, _Y) (((_X) + (_Y) - 1) & ~((_Y) - 1)) #define MAX_DEV (4) static cl_int err; static cl_platform_id platform; static cl_device_id device[MAX_DEV]; static cl_context context; static cl_command_queue queue[MAX_DEV]; static cl_program program[MAX_DEV]; static cl_kernel kernel[MAX_DEV]; static cl_mem a_d[MAX_DEV], b_d[MAX_DEV], c_d[MAX_DEV]; static float *A, *B, *C; static int M, N, K; static int NON_OPTIMAL; static int nDevCnt; #if (MAT_COPY) static float *A_backup, *B_backup, *C_backup; static int M_backup, N_backup, K_backup; #endif // MAT_COPY #define NUM_WORK_ITEM (32) #define VECTOR_WIDTH (16) #define USING_NON_VECTOR (1) #if (MAT_COPY) static void mat_copy(float* __restrict pfDst, float* __restrict pfSrc, int nXDsize, int nYDsize, int nXSsize, int nYSsize, int nAddPadding) { if (nAddPadding) { #pragma omp parallel for for (int i = 0; i < nXDsize; i++) { for (int j = 0; j < nYDsize; j++) { if (i >= nXSsize || j >= nYSsize) { *(pfDst + i * nXDsize + j) = 0.0f; } else { *(pfDst + i * nXDsize + j) =*(pfSrc + i * nXSsize + j); } } } } else { #pragma omp parallel for for (int i = 0; i < nXDsize; i++) { for (int j = 0; j < nYDsize; j++) { *(pfDst + i * nXSsize + j) =*(pfSrc + i * nXDsize + j); } } } } #endif // MAT_COPY void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { A = _A, B = _B, C = _C; M = _M, N = _N, K = _K; if (_M % (NUM_WORK_ITEM * nDevCnt) != 0 || _N % NUM_WORK_ITEM != 0 || _K % NUM_WORK_ITEM != 0) { NON_OPTIMAL = 1; } else { NON_OPTIMAL = 0; } // Setup kernel arguments for (int i = 0; i < nDevCnt; i++) { const int nLocalM = (i == (nDevCnt - 1)) ? M - ((M / nDevCnt) * (nDevCnt - 1)) : (M / nDevCnt); err = clSetKernelArg(kernel[i], 0, sizeof(cl_mem), &a_d[i]); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 1, sizeof(cl_mem), &b_d[i]); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 2, sizeof(cl_mem), &c_d[i]); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 3, sizeof(int), &nLocalM); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 4, sizeof(int), &N); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 5, sizeof(int), &K); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 6, sizeof(int), &NON_OPTIMAL); CHECK_ERROR(err); // Setup global work size and local work size size_t gws[2] , lws[2]; #if (!USING_NON_VECTOR) if (NON_OPTIMAL == 0) { gws[0] = (size_t)nLocalM; gws[1] = (size_t)N / VECTOR_WIDTH; lws[0] = NUM_WORK_ITEM; lws[1] = NUM_WORK_ITEM / VECTOR_WIDTH; } else #endif { gws[0] = (size_t)ALIGN_UP(nLocalM, VECTOR_WIDTH) / VECTOR_WIDTH; gws[1] = (size_t)ALIGN_UP(N, NUM_WORK_ITEM); lws[0] = NUM_WORK_ITEM / VECTOR_WIDTH; lws[1] = NUM_WORK_ITEM; } for (int i = 0; i < 2; ++i) { // By OpenCL spec, global work size should be MULTIPLE of local work size // Formula below achieve it // e.g., gws = 25, lws = 16, then (25 + 16 - 1) / 16 * 16 = 40 / 16 * 16 = 2 * 16 = 32 gws[i] = (gws[i] + lws[i] - 1) / lws[i] * lws[i]; } // printf("gws : %d, %d lws : %d, %d\n",gws[0],gws[1],lws[0],lws[1]); // Run kernel err = clEnqueueNDRangeKernel(queue[i], kernel[i], 2, NULL, gws, lws, 0, NULL, NULL); CHECK_ERROR(err); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < nDevCnt; i++) { err = clFinish(queue[i]); CHECK_ERROR(err); } } static void print_platform_info(cl_platform_id platform) { size_t sz; char *buf; CHECK_ERROR(clGetPlatformInfo(platform, CL_PLATFORM_NAME, 0, NULL, &sz)); buf = (char*)malloc(sz); CHECK_ERROR(clGetPlatformInfo(platform, CL_PLATFORM_NAME, sz, buf, NULL)); printf("Detected OpenCL platform: %s\n", buf); free(buf); } static void print_device_info(cl_device_id device) { size_t sz; char *buf; CHECK_ERROR(clGetDeviceInfo(device, CL_DEVICE_NAME, 0, NULL, &sz)); buf = (char*)malloc(sz); CHECK_ERROR(clGetDeviceInfo(device, CL_DEVICE_NAME, sz, buf, NULL)); printf("Detected OpenCL device: %s\n", buf); free(buf); } static cl_program create_and_build_program_with_source(cl_context context, cl_device_id device, const char *file_name) { FILE *file = fopen(file_name, "rb"); if (file == NULL) { printf("Failed to open %s\n", file_name); exit(EXIT_FAILURE); } fseek(file, 0, SEEK_END); size_t source_size = ftell(file); rewind(file); char *source_code = (char*)malloc(source_size + 1); size_t ntotal = 0; while (ntotal < source_size) { int nread = fread(source_code, sizeof(char), source_size, file); ntotal += nread; } source_code[source_size] = '\0'; fclose(file); cl_program program = clCreateProgramWithSource(context, 1, (const char **)&source_code, &source_size, &err); CHECK_ERROR(err); free(source_code); err = clBuildProgram(program, 1, &device, "", NULL, NULL); if (err == CL_BUILD_PROGRAM_FAILURE) { size_t log_size; CHECK_ERROR(clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size)); char *log = (char*)malloc(log_size + 1); CHECK_ERROR(clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, log_size, log, NULL)); log[log_size] = 0; printf("Compile error:\n%s\n", log); free(log); } CHECK_ERROR(err); return program; } void mat_mul_init(float *A, float *B, float *C, int M, int N, int K) { // Get OpenCL platform err = clGetPlatformIDs(1, &platform, NULL); CHECK_ERROR(err); print_platform_info(platform); // Get OpenCL device err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 0, NULL, (cl_uint*)&nDevCnt); err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, (cl_uint)nDevCnt, device, NULL); CHECK_ERROR(err); // for (int i = 0; i < nDevCnt; i++) { print_device_info(device[0]); } // Create OpenCL context context = clCreateContext(NULL, (cl_uint)nDevCnt, device, NULL, NULL, &err); CHECK_ERROR(err); // Create OpenCL command queue for (int i = 0; i < nDevCnt; i++) { int nLocalM = (i == (nDevCnt - 1)) ? M - ((M / nDevCnt) * (nDevCnt - 1)) : (M / nDevCnt); queue[i] = clCreateCommandQueue(context, device[i], 0, &err); CHECK_ERROR(err); // Compile program from "kernel.cl" program[i] = create_and_build_program_with_source(context, device[i], "kernel.cl"); // Extract kernel from compiled program kernel[i] = clCreateKernel(program[i], "sgemm", &err); CHECK_ERROR(err); // Create GPU buffers a_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, nLocalM * K * sizeof(float), NULL, &err); CHECK_ERROR(err); b_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, K * N * sizeof(float), NULL, &err); CHECK_ERROR(err); c_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, nLocalM * N * sizeof(float), NULL, &err); CHECK_ERROR(err); // Write to GPU; A (cpu) -> a_d (gpu), B (cpu) -> b_d (gpu) err = clEnqueueWriteBuffer(queue[i], a_d[i], CL_TRUE, 0, nLocalM * K * sizeof(float), &A[i * (M / nDevCnt) * K], 0, NULL, NULL); CHECK_ERROR(err); err = clEnqueueWriteBuffer(queue[i], b_d[i], CL_TRUE, 0, K * N * sizeof(float), B, 0, NULL, NULL); CHECK_ERROR(err); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < nDevCnt; i++) { err = clFinish(queue[i]); CHECK_ERROR(err); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Read from GPU; c_d (gpu) -> C (cpu) for (int i = 0; i < nDevCnt; i++) { int nLocalM = (i == (nDevCnt - 1)) ? M - ((M / nDevCnt) * (nDevCnt - 1)) : (M / nDevCnt); err = clEnqueueReadBuffer(queue[i], c_d[i], CL_TRUE, 0, nLocalM * N * sizeof(float), &C[i * (M / nDevCnt) * N], 0, NULL, NULL); CHECK_ERROR(err); } for (int i = 0; i < nDevCnt; i++) { // DO NOT REMOVE; NEEDED FOR TIME MEASURE err = clFinish(queue[i]); CHECK_ERROR(err); } }