#include "mat_mul.h" #include "util.h" #include #include #define CHECK_ERROR(err) \ if (err != CL_SUCCESS) { \ printf("[%s:%d] OpenCL error %d\n", __FILE__, __LINE__, err); \ exit(EXIT_FAILURE); \ } #define MAX_DEV 4 #define WPT 8 #define sizeA (M * K * sizeof(float)) #define sizeB (K * N * sizeof(float)) #define sizeC (M * N * sizeof(float)) #define sizeEA (extra * K * sizeof(float)) #define sizeEC (extra * N * sizeof(float)) static cl_int err; static cl_platform_id platform; static cl_device_id device[MAX_DEV]; static cl_context context; static cl_command_queue queue[MAX_DEV]; static cl_program program; static cl_kernel kernel[MAX_DEV]; static int ndev; static cl_mem a_d[MAX_DEV], b_d[MAX_DEV], c_d[MAX_DEV]; static float *A, *B, *C; static int M, N, K; static int extra; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { A = _A, B = _B, C = _C; M = _M, N = _N, K = _K; // Setup kernel arguments for (int i = 0; i < ndev; i++) { M = (i == ndev - 1 && extra)? M/ndev + extra : M/ndev; err = clSetKernelArg(kernel[i], 0, sizeof(cl_mem), &a_d[i]); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 1, sizeof(cl_mem), &b_d[i]); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 2, sizeof(cl_mem), &c_d[i]); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 3, sizeof(int), &M); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 4, sizeof(int), &N); CHECK_ERROR(err); err = clSetKernelArg(kernel[i], 5, sizeof(int), &K); CHECK_ERROR(err); // Setup global work size and local work size size_t gws[2] = {(size_t)(M + WPT - 1)/WPT, (size_t)N}, lws[2] = {32/WPT, 32}; for (int i = 0; i < 2; ++i) { // By OpenCL spec, global work size should be MULTIPLE of local work size // Formula below achieve it // e.g., gws = 25, lws = 16, then (25 + 16 - 1) / 16 * 16 = 40 / 16 * 16 = 2 * 16 = 32 gws[i] = (gws[i] + lws[i] - 1) / lws[i] * lws[i]; } //printf("GPU(%d), M(%d), gws(%d, %d)\n", i + 1, M, (int)gws[0], (int)gws[1]); // Run kernel err = clEnqueueNDRangeKernel(queue[i], kernel[i], 2, NULL, gws, lws, 0, NULL, NULL); CHECK_ERROR(err); M = _M; } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < ndev; i++) { err = clFinish(queue[i]); CHECK_ERROR(err); } } static void print_platform_info(cl_platform_id platform) { size_t sz; char *buf; CHECK_ERROR(clGetPlatformInfo(platform, CL_PLATFORM_NAME, 0, NULL, &sz)); buf = (char*)malloc(sz); CHECK_ERROR(clGetPlatformInfo(platform, CL_PLATFORM_NAME, sz, buf, NULL)); printf("Detected OpenCL platform: %s\n", buf); free(buf); } static void print_device_info(cl_device_id *device) { size_t sz; char *buf; for (int i = 0; i < ndev; i++) { CHECK_ERROR(clGetDeviceInfo(device[i], CL_DEVICE_NAME, 0, NULL, &sz)); buf = (char*)malloc(sz); CHECK_ERROR(clGetDeviceInfo(device[i], CL_DEVICE_NAME, sz, buf, NULL)); printf("Detected OpenCL device: %s\n", buf); free(buf); } } static cl_program create_and_build_program_with_source(cl_context context, cl_device_id *device, const char *file_name) { FILE *file = fopen(file_name, "rb"); if (file == NULL) { printf("Failed to open %s\n", file_name); exit(EXIT_FAILURE); } fseek(file, 0, SEEK_END); size_t source_size = ftell(file); rewind(file); char *source_code = (char*)malloc(source_size + 1); size_t ntotal = 0; while (ntotal < source_size) { int nread = fread(source_code, sizeof(char), source_size, file); ntotal += nread; } source_code[source_size] = '\0'; fclose(file); cl_program program = clCreateProgramWithSource(context, 1, (const char **)&source_code, &source_size, &err); CHECK_ERROR(err); free(source_code); err = clBuildProgram(program, ndev, device, "", NULL, NULL); if (err == CL_BUILD_PROGRAM_FAILURE) { size_t log_size; CHECK_ERROR(clGetProgramBuildInfo(program, device[0], CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size)); char *log = (char*)malloc(log_size + 1); CHECK_ERROR(clGetProgramBuildInfo(program, device[0], CL_PROGRAM_BUILD_LOG, log_size, log, NULL)); log[log_size] = 0; printf("Compile error:\n%s\n", log); free(log); } CHECK_ERROR(err); return program; } void mat_mul_init(float *A, float *B, float *C, int M, int N, int K) { // Get OpenCL platform err = clGetPlatformIDs(1, &platform, NULL); CHECK_ERROR(err); print_platform_info(platform); // Get OpenCL device err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, MAX_DEV, device, (unsigned int*)&ndev); CHECK_ERROR(err); print_device_info(device); // Use one GPU only if M is smaller than MAX_DEV if (M < MAX_DEV) ndev = 1; //int tempM = M; extra = M % ndev; M /= ndev; // Create OpenCL context context = clCreateContext(NULL, ndev, device, NULL, NULL, &err); CHECK_ERROR(err); // Create OpenCL command queue for (int i = 0; i < ndev; i++) { queue[i] = clCreateCommandQueue(context, device[i], 0, &err); CHECK_ERROR(err); } // Compile program from "kernel.cl" program = create_and_build_program_with_source(context, device, "kernel.cl"); // Extract kernel from compiled program for (int i = 0; i < ndev; i++) { kernel[i] = clCreateKernel(program, "sgemm", &err); CHECK_ERROR(err); } // Create GPU buffers for (int i = 0; i < ndev; i++) { if (i == ndev - 1 && extra) { //printf("%d extra rows are allocated to (%d)th GPU\n", extra, i + 1); a_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeA + sizeEA, NULL, &err); CHECK_ERROR(err); c_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeC + sizeEC, NULL, &err); CHECK_ERROR(err); } else { a_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeA, NULL, &err); CHECK_ERROR(err); c_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeC, NULL, &err); CHECK_ERROR(err); } b_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeB, NULL, &err); CHECK_ERROR(err); } // Write to GPU; A (cpu) -> a_d (gpu), B (cpu) -> b_d (gpu) for (int i = 0; i < ndev; i++) { int size = (i == ndev - 1 && extra)? sizeA + sizeEA : sizeA; err = clEnqueueWriteBuffer(queue[i], a_d[i], CL_TRUE, 0, size, (void*)((size_t)A + sizeA * i), 0, NULL, NULL); CHECK_ERROR(err); err = clEnqueueWriteBuffer(queue[i], b_d[i], CL_TRUE, 0, sizeB, B, 0, NULL, NULL); CHECK_ERROR(err); //float * dA[4]; //alloc_mat(&dA[i], size / (K*sizeof(float)), K); //err = clEnqueueReadBuffer(queue[i], a_d[i], CL_TRUE, 0, size, (void*)dA[i], 0, NULL, NULL); //CHECK_ERROR(err); //printf("A matrix of (%d) GPU, size(%d), M(%d), N(%d), sizeA(%d), sizeEA(%d), extra(%d)\n", i+1, (int)size, M, N, (int)sizeA, (int)sizeEA, extra); //print_mat(dA[i], size / (K*sizeof(float)), K); } //printf("Original A matrix\n"); //print_mat(A, tempM, K); // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < ndev; i++) { err = clFinish(queue[i]); CHECK_ERROR(err); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { M /= ndev; // Read from GPU; c_d (gpu) -> C (cpu) for (int i = 0; i < ndev; i++) { if (i == ndev - 1 && extra) { err = clEnqueueReadBuffer(queue[i], c_d[i], CL_TRUE, 0, sizeC + sizeEC, (void*)((size_t)C + sizeC * i), 0, NULL, NULL); } else { err = clEnqueueReadBuffer(queue[i], c_d[i], CL_TRUE, 0, sizeC, (void*)((size_t)C + sizeC * i), 0, NULL, NULL); } //printf("M(%d), N(%d), sizeC(%d), sizeEC(%d)\n", M, N, (int)sizeC, (int)sizeEC); CHECK_ERROR(err); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < ndev; i++) { err = clFinish(queue[i]); CHECK_ERROR(err); } }