#include #include #include #include #include "convolution.h" #include "util.h" #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU (4) #define SINGLE_NODE (0) #define TIME_MEASURE (0) #define ALIGN_UP(_A,_SIZE) ((((_A) + (_SIZE) - 1) / (_SIZE)) * (_SIZE)) #define MIN(_A,_B) ((_A) < (_B) ? (_A) : (_B)) #define OPTIMAL_FILTER_SIZE (16) #define ENABLE_PREFETCH (1) #if (ENABLE_PREFETCH) #define MM_PREFETCH(__A, __B) _mm_prefetch(__A, __B) #else #define MM_PREFETCH(__A, __B) #endif #define OPT_LEVEL_2 (0) #define OPTIMAL_NODE_CNT (2) #define MPI_CH_CNT (4) #define MPI_FILTER_CH_CNT (MPI_CH_CNT * OPTIMAL_NODE_CNT) #define TS (8) static float *__restrict input, *__restrict output, *__restrict filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; int num_devices = 0; // Array of device (GPU) pointers static float *input_d[MAX_NUM_GPU]; static float *output_d[MAX_NUM_GPU]; static float *filter_d[MAX_NUM_GPU]; static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU], Nsize[MAX_NUM_GPU]; __global__ void k_convolution_Opt2(float *__restrict _input, float *__restrict _output, float *__restrict _filter, \ int _N, int _C, int _H, int _W, \ int _K, int _OH, int _OW) { const int HW = _H * _W; const int CHW = _C * HW; const int RS = 16 * 16; const int CRS = _C * RS; const int OHOW = _OH * _OW; const int KOHOW = _K * OHOW; const int n = blockIdx.x; const int k = blockIdx.y; const int c = blockIdx.z; const int th_x = threadIdx.x; const int th_y = threadIdx.y; // printf("Optimal calculation :) \n"); // N, C, K, H, W: 32 이상의 적당히 큰 2의 지수승 // R, S: 16 __shared__ float Localfilter[OPTIMAL_FILTER_SIZE][OPTIMAL_FILTER_SIZE]; for (int i = 1; i < OPTIMAL_FILTER_SIZE / TS; i++) { Localfilter[th_x * i][th_y *i] = _filter[k * CRS + (c * RS) + th_x * i * OPTIMAL_FILTER_SIZE + th_y * i]; } __syncthreads(); const int cHW = c * HW; const int nCHW_cHW = n * CHW + cHW; const int nKOHOW_kOHOW = n * KOHOW + k * OHOW; for (int oh = th_x; oh < _OH; oh += TS) { const int nKOHOW_kOHOW_ohOW = nKOHOW_kOHOW + oh * _OW; const int nCHW_ohW_cHW = nCHW_cHW + oh * _W; for (int ow = th_y; ow < _OW; ow += TS) { const float* pnStartInput = &_input[nCHW_ohW_cHW + ow]; if (oh < _OH && ow < _OW) { float o = 0.f; for (int i = 0; i < OPTIMAL_FILTER_SIZE; i++) { for (int j = 0; j < OPTIMAL_FILTER_SIZE; j++) { o += pnStartInput[i * OPTIMAL_FILTER_SIZE + j] * Localfilter[i][j]; } } _output[nKOHOW_kOHOW_ohOW + ow] = o; } __syncthreads(); } } } __global__ void k_convolution_Opt(float *__restrict _input, float *__restrict _output, float *__restrict _filter, \ const int _N, const int _C, const int _H, const int _W, \ const int _K, const int _OH, const int _OW) { const int globalRow = blockDim.x * blockIdx.x + threadIdx.x; const int globalCol = blockDim.y * blockIdx.y + threadIdx.y; if (globalRow >= _OH || globalCol >= _N * _K * _OW) { // printf("Can't enter here!! :GR :%d, GC :%d\n",globalRow,globalCol); return; } // printf("Come in global row : [%x] Global Col : %d\n", globalRow, globalCol); int n, k, w; n = globalCol / (_K * _OW); w = globalCol - n * (_K * _OW); k = w / _OW; w = w - k * _OW; int col = w; float o = 0.f; const int nCWH_rowW_col = n *_C*_W*_H + globalRow*_W + col; const int kCRS = k*_C*OPTIMAL_FILTER_SIZE*OPTIMAL_FILTER_SIZE; const int WH = _W*_H; for (int c = 0; c < _C; c++){ const int nCWH_cWH_rowW_col = nCWH_rowW_col + c*WH; const int kCRS_cRS = kCRS + c*OPTIMAL_FILTER_SIZE*OPTIMAL_FILTER_SIZE; for (int i = 0; i < OPTIMAL_FILTER_SIZE; i++){ #if 1 const int in_offset = nCWH_cWH_rowW_col + i*_W; for (int j = 0; j < OPTIMAL_FILTER_SIZE / 4; j++) { float4 filter_v = *((float4*)&_filter[kCRS_cRS + i*OPTIMAL_FILTER_SIZE + j * 4]); o += (_input[in_offset + j * 4 + 0] * filter_v.x + _input[in_offset + j * 4 + 1] * filter_v.y + _input[in_offset + j * 4 + 2] * filter_v.z + _input[in_offset + j * 4 + 3] * filter_v.w); } #else for (int j = 0; j < OPTIMAL_FILTER_SIZE; j++) { float in = _input[nCWH_cWH_rowW_col + i*_W + j]; float filter = _filter[kCRS_cRS + i*OPTIMAL_FILTER_SIZE + j]; o += in * filter; } #endif } } _output[n * _K*_OH*_OW + k*_OH*_OW + globalRow*_OW + col] = o; #if 0 // print if ((n * _K*_OH*_OW + k*_OH*_OW + row*_OW + col) % 0x4000 == 0) { printf("_output[%x] set %3.f\n", n * _K*_OH*_OW + k*_OH*_OW + row*_OW + col, o); } #endif } __global__ void k_convolution_base(float *__restrict _input, float *__restrict _output, float *__restrict _filter, \ int _N, int _C, int _H, int _W, \ int _K, int _R, int _S, \ int _pad, int _dilation, int _stride, \ int _OH, int _OW) { const int globalRow = blockDim.x * blockIdx.x + threadIdx.x; const int globalCol = blockDim.y * blockIdx.y + threadIdx.y; if (globalRow >= _OH || globalCol >= _N * _K * _OW) { return; } // printf("Come in global row : [%x] Global Col : %d\n", globalRow, globalCol); int n, k, w; w = globalCol; n = w / (_K * _OW); w = w - n * (_K * _OW); k = w / _OW; w = w - k * _OW; int col = w; int row = globalRow; int start_row = row * _stride - _pad; int start_col = col * _stride - _pad; float o = 0.f; for (int c = 0; c < _C; c++){ for (int i = 0; i < _R; i++){ for (int j = 0; j < _S; j++) { int h = start_row + i * _dilation; int w = start_col + j * _dilation; if (h < 0 || w < 0 || h >= _H || w >= _W) continue; float in = _input[n *_C*_W*_H + c*_W*_H + h*_W + w]; float filter = _filter[k*_C*_R*_S + c*_R*_S + i*_S + j]; o += in * filter; } } } _output[n * _K*_OH*_OW + k*_OH*_OW + row*_OW + col] = o; #if 0 // print if ((n * _K*_OH*_OW + k*_OH*_OW + row*_OW + col) % 0x4000 == 0) { printf("_output[%x] set %3.f\n", n * _K*_OH*_OW + k*_OH*_OW + row*_OW + col, o); } #endif } #define OPTIMAL_TS_X (2) #define OPTIMAL_TS_Y (32) void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { #if (!SINGLE_NODE) MPI_Status stMpiStatus; MPI_Request stMpiRequest[12]; #endif if (_pad == 0 && _dilation == 1 && _stride == 1 #if (!SINGLE_NODE) && mpi_world_size == OPTIMAL_NODE_CNT #endif && (((N | C | K | H | W) & (32 - 1)) == 0) && R == 16 && S == 16) { #if (!SINGLE_NODE) const int SendNodeSize = N / OPTIMAL_NODE_CNT / MPI_CH_CNT; const int SendFilterSize = K / MPI_CH_CNT; #endif // Optimal path if (mpi_rank == 0) { input = _input; output = _output; filter = _filter; #if (!SINGLE_NODE) MPI_Isend(input + (SendNodeSize * (MPI_CH_CNT + 0)) * C * H * W, (SendNodeSize) * C * H * W , MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &stMpiRequest[0]); MPI_Isend(input + (SendNodeSize * (MPI_CH_CNT + 1)) * C * H * W, (SendNodeSize) * C * H * W , MPI_FLOAT, 1, 1, MPI_COMM_WORLD, &stMpiRequest[1]); MPI_Isend(input + (SendNodeSize * (MPI_CH_CNT + 2)) * C * H * W, (SendNodeSize) * C * H * W , MPI_FLOAT, 1, 2, MPI_COMM_WORLD, &stMpiRequest[2]); MPI_Isend(input + (SendNodeSize * (MPI_CH_CNT + 3)) * C * H * W, (SendNodeSize) * C * H * W , MPI_FLOAT, 1, 3, MPI_COMM_WORLD, &stMpiRequest[3]); MPI_Isend(filter , SendFilterSize * C * R * S, MPI_FLOAT, 1, 4, MPI_COMM_WORLD, &stMpiRequest[4]); MPI_Isend(filter + SendFilterSize * C * R * S , SendFilterSize * C * R * S, MPI_FLOAT, 1, 5, MPI_COMM_WORLD, &stMpiRequest[5]); MPI_Isend(filter + SendFilterSize * 2 * C * R * S, SendFilterSize * C * R * S, MPI_FLOAT, 1, 6, MPI_COMM_WORLD, &stMpiRequest[6]); MPI_Isend(filter + SendFilterSize * 3 * C * R * S, SendFilterSize * C * R * S, MPI_FLOAT, 1, 7, MPI_COMM_WORLD, &stMpiRequest[7]); MPI_Irecv(output + (SendNodeSize * (MPI_CH_CNT + 0)) * K * OH * OW, (SendNodeSize) * K * OH * OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &stMpiRequest[8]); MPI_Irecv(output + (SendNodeSize * (MPI_CH_CNT + 1)) * K * OH * OW, (SendNodeSize) * K * OH * OW, MPI_FLOAT, 1, 1, MPI_COMM_WORLD, &stMpiRequest[9]); MPI_Irecv(output + (SendNodeSize * (MPI_CH_CNT + 2)) * K * OH * OW, (SendNodeSize) * K * OH * OW, MPI_FLOAT, 1, 2, MPI_COMM_WORLD, &stMpiRequest[10]); MPI_Irecv(output + (SendNodeSize * (MPI_CH_CNT + 3)) * K * OH * OW, (SendNodeSize) * K * OH * OW, MPI_FLOAT, 1, 3, MPI_COMM_WORLD, &stMpiRequest[11]); //printf("Master receive : %x, %x, %x, %x\n", (SendNodeSize * MPI_CH_CNT + 0), (SendNodeSize * MPI_CH_CNT + 1), (SendNodeSize * MPI_CH_CNT + 2), (SendNodeSize * MPI_CH_CNT + 3)); #if (TIME_MEASURE) printf("Master send started : %f sec\n", timer_stop(0)); #endif #endif // printf ("Optimized path! SendNodeOffset : %d, mpi_world_size : %d", N / OPTIMAL_NODE_CNT / MPI_CH_CNT, mpi_world_size); // Launch kernel on every GPU // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(input_d[i], input + Nbegin[i] * C * H * W, (Nsize[i]) * C * H * W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(filter_d[i], filter, K * C * R * S * sizeof(float), cudaMemcpyHostToDevice) ); } #if (OPT_LEVEL_2) for (int i = 0; i < num_devices; i++) { dim3 blockDim(OPTIMAL_TS, OPTIMAL_TS, 1); dim3 gridDim(Nsize[i], K, C); CUDA_CALL( cudaSetDevice(i) ); k_convolution_Opt2<<>>(input_d[i], output_d[i], filter_d[i], Nsize[i], _C, _H, _W, _K, OH, OW); } #else for (int i = 0; i < num_devices; i++) { dim3 blockDim(OPTIMAL_TS_X, OPTIMAL_TS_Y, 1); dim3 gridDim((OH + OPTIMAL_TS_X - 1) /OPTIMAL_TS_X, (Nsize[i] * K * OW + OPTIMAL_TS_Y - 1) / OPTIMAL_TS_Y, 1); CUDA_CALL( cudaSetDevice(i) ); k_convolution_Opt<<>>(input_d[i], output_d[i], filter_d[i], Nsize[i], _C, _H, _W, _K, OH, OW); } #endif for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } // Download C matrix from GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(output + Nbegin[i] * K * OH * OW, output_d[i], (Nsize[i]) * K * OH * OW * sizeof(float), cudaMemcpyDeviceToHost) ); } #if (TIME_MEASURE) printf("Master calculation complete : %f sec\n", timer_stop(0)); #endif #if (!SINGLE_NODE) for(int i = 0; i < 12; i++) { MPI_Wait(&stMpiRequest[i], &stMpiStatus); } #if (TIME_MEASURE) printf("Master recieve complete : %f sec\n", timer_stop(0)); #endif #endif } #if (!SINGLE_NODE) else { // printf("Check memory pointer, input : %x Filter :% x output : %x\n", input, filter, output); MPI_Irecv(input + (SendNodeSize * 0) * C * H * W, SendNodeSize * C * H * W , MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &stMpiRequest[0]); MPI_Irecv(input + (SendNodeSize * 1) * C * H * W, SendNodeSize * C * H * W , MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &stMpiRequest[1]); MPI_Irecv(input + (SendNodeSize * 2) * C * H * W, SendNodeSize * C * H * W , MPI_FLOAT, 0, 2, MPI_COMM_WORLD, &stMpiRequest[2]); MPI_Irecv(input + (SendNodeSize * 3) * C * H * W, SendNodeSize * C * H * W , MPI_FLOAT, 0, 3, MPI_COMM_WORLD, &stMpiRequest[3]); MPI_Irecv(filter + SendFilterSize * 0 * C * R * S, SendFilterSize * C * R * S, MPI_FLOAT, 0, 4, MPI_COMM_WORLD, &stMpiRequest[4]); MPI_Irecv(filter + SendFilterSize * 1 * C * R * S, SendFilterSize * C * R * S, MPI_FLOAT, 0, 5, MPI_COMM_WORLD, &stMpiRequest[5]); MPI_Irecv(filter + SendFilterSize * 2 * C * R * S, SendFilterSize * C * R * S, MPI_FLOAT, 0, 6, MPI_COMM_WORLD, &stMpiRequest[6]); MPI_Irecv(filter + SendFilterSize * 3 * C * R * S, SendFilterSize * C * R * S, MPI_FLOAT, 0, 7, MPI_COMM_WORLD, &stMpiRequest[7]); for(int i = 0; i < 8; i++) { MPI_Wait(&stMpiRequest[i], &stMpiStatus); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(input_d[i], input + Nbegin[i] * C * H * W, (Nsize[i]) * C * H * W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(filter_d[i], filter, K * C * R * S * sizeof(float), cudaMemcpyHostToDevice) ); } #if (OPT_LEVEL_2) for (int i = 0; i < num_devices; i++) { dim3 blockDim(OPTIMAL_TS, OPTIMAL_TS, 1); dim3 gridDim(Nsize[i], K, C); CUDA_CALL( cudaSetDevice(i) ); k_convolution_Opt2<<>>(input_d[i], output_d[i], filter_d[i], Nsize[i], _C, _H, _W, _K, OH, OW); } #else for (int i = 0; i < num_devices; i++) { dim3 blockDim(OPTIMAL_TS_X, OPTIMAL_TS_Y, 1); dim3 gridDim((OH + OPTIMAL_TS_X - 1) /OPTIMAL_TS_X, (Nsize[i] * K * OW + OPTIMAL_TS_Y - 1) / OPTIMAL_TS_Y, 1); CUDA_CALL( cudaSetDevice(i) ); k_convolution_Opt<<>>(input_d[i], output_d[i], filter_d[i], Nsize[i], _C, _H, _W, _K, OH, OW); } #endif for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } // Download C matrix from GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(output + Nbegin[i] * K * OH * OW, output_d[i], (Nsize[i]) * K * OH * OW * sizeof(float), cudaMemcpyDeviceToHost) ); } // printf("Slave set from output[%d], stride all : [%d]\n", SendNodeOffset, SendNodeOffset * KOHOW); // printf("Slave set end output[%d], stride all : [%d]\n", N, N * KOHOW); #if (TIME_MEASURE) printf("Slave calculation complete : %f sec\n", timer_stop(0)); #endif // printf("Slave send from output[%d]\n", SendNodeOffset * C * OH * OW); MPI_Isend(output , SendNodeSize * K * OH * OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &stMpiRequest[0]); MPI_Isend(output + (SendNodeSize * 1) * K * OH * OW, SendNodeSize * K * OH * OW, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &stMpiRequest[1]); MPI_Isend(output + (SendNodeSize * 2) * K * OH * OW, SendNodeSize * K * OH * OW, MPI_FLOAT, 0, 2, MPI_COMM_WORLD, &stMpiRequest[2]); MPI_Isend(output + (SendNodeSize * 3) * K * OH * OW, SendNodeSize * K * OH * OW, MPI_FLOAT, 0, 3, MPI_COMM_WORLD, &stMpiRequest[3]); //printf ("FirstData : %3.f, %3.f, %3.f, %3.f\n", *(output + (SendNodeSize *0) * K * OH * OW),*(output + (SendNodeSize *1) * K * OH * OW),*(output + (SendNodeSize *2) * K * OH * OW),*(output + (SendNodeSize *3) * K * OH * OW)); //printf("Slave send : %x, %x, %x, %x\n",(SendNodeSize * 0) * K * OH * OW, (SendNodeSize * 1) * K * OH * OW, (SendNodeSize * 2) * K * OH * OW, (SendNodeSize * 3) * K * OH * OW); for(int i = 0; i < 4; i++) { MPI_Wait(&stMpiRequest[i], &stMpiStatus); } #if (TIME_MEASURE) printf("Slave send complete : %f sec\n", timer_stop(0)); #endif } #endif // SINGLE_NODE } else { #if (!SINGLE_NODE) const int SendNodeSize = N / 2; const int SendNodeOffset = mpi_world_size > 1 ? (N - SendNodeSize) : N; #endif if (mpi_rank == 0) { input = _input; output = _output; filter = _filter; // printf("Check memory pointer, input : %x Filter :% x output : %x, Rank :%d\n", input, filter, output, mpi_rank); // printf("Check memory size, input : %d Filter :%d output : %d, Rank :%d\n", sizeof(float) * N * C*H*W, sizeof(float) *K * C * R * S, sizeof(float) *N * K * OH * OW, mpi_rank); #if (!SINGLE_NODE) if (mpi_world_size > 1 && SendNodeSize > 0) { MPI_Isend(input + SendNodeOffset * C * H * W, SendNodeSize * C * H * W , MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &stMpiRequest[0]); MPI_Isend(filter, K * C * R * S, MPI_FLOAT, 1, 1, MPI_COMM_WORLD, &stMpiRequest[1]); MPI_Irecv(output + SendNodeOffset * K * OH * OW, SendNodeSize * K * OH * OW, MPI_FLOAT, 1, 2, MPI_COMM_WORLD, &stMpiRequest[2]); #if (TIME_MEASURE) printf("Master send started : %f sec\n", timer_stop(0)); #endif } #endif // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { // printf("Send to %d, size :%d amount : %d from %d MPI rank : %d\n", Nbegin[i],Nsize[i],(Nsize[i]) * C * H * W * sizeof(float), i, mpi_rank); // printf("Check memory pointer, input : %x Filter :% x output : %x, Rank :%d\n", input, filter, output, mpi_rank); CUDA_CALL( cudaMemcpy(input_d[i], input + Nbegin[i] * C * H * W, (Nsize[i]) * C * H * W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(filter_d[i], filter, K * C * R * S * sizeof(float), cudaMemcpyHostToDevice) ); } for (int i = 0; i < num_devices; i++) { dim3 blockDim(OPTIMAL_TS_X, OPTIMAL_TS_Y, 1); dim3 gridDim((OH + OPTIMAL_TS_X - 1) /OPTIMAL_TS_X, (Nsize[i] * K * OW + OPTIMAL_TS_Y - 1) / OPTIMAL_TS_Y, 1); CUDA_CALL( cudaSetDevice(i) ); k_convolution_base<<>>(input_d[i], output_d[i], filter_d[i], Nsize[i], _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride, OH, OW); } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } // Download C matrix from GPU for (int i = 0; i < num_devices; i++) { // printf("Recieved to %d, size %d amount : %d from %d MPI rank : %d\n", Nbegin[i], Nsize[i], (Nsize[i]) * K * OH * OW * sizeof(float), i, mpi_rank); const int nOffset = Nbegin[i] * K * OH * OW; CUDA_CALL( cudaMemcpy(output + nOffset, output_d[i], (Nsize[i]) * K * OH * OW * sizeof(float), cudaMemcpyDeviceToHost) ); // printf("Output : %3.f, %3.f, %3.f, ... from %d MPI rank : %d\n", *(output + nOffset), *(output + nOffset + 1), *(output + nOffset + 2), i, mpi_rank); } #if (TIME_MEASURE) printf("Master calculation complete : %f sec\n", timer_stop(0)); #endif #if (!SINGLE_NODE) if (mpi_world_size > 1 && SendNodeSize > 0) { MPI_Wait(&stMpiRequest[0], &stMpiStatus); MPI_Wait(&stMpiRequest[1], &stMpiStatus); MPI_Wait(&stMpiRequest[2], &stMpiStatus); #if (TIME_MEASURE) printf("Master recieve complete : %f sec\n", timer_stop(0)); #endif } #endif } #if (!SINGLE_NODE) else if (SendNodeSize > 0) { // printf("Check memory pointer, input : %x Filter :% x output : %x, Rank :%d\n", input, filter, output, mpi_rank); MPI_Irecv(input, SendNodeSize * C * H * W , MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &stMpiRequest[0]); MPI_Irecv(filter, K * C * R * S, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &stMpiRequest[1]); MPI_Wait(&stMpiRequest[0], &stMpiStatus); MPI_Wait(&stMpiRequest[1], &stMpiStatus); #if (TIME_MEASURE) printf("Slave receive complete : %f sec\n", timer_stop(0)); #endif // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { // printf("Send to %d, amount : %x from %d MPI rank : %d\n", Nbegin[i], (Nsize[i]) * C * H * W * sizeof(float), i, mpi_rank); CUDA_CALL( cudaMemcpy(input_d[i], input + Nbegin[i] * C * H * W, (Nsize[i]) * C * H * W * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(filter_d[i], filter, K * C * R * S * sizeof(float), cudaMemcpyHostToDevice) ); } for (int i = 0; i < num_devices; i++) { dim3 blockDim(OPTIMAL_TS_X, OPTIMAL_TS_Y, 1); dim3 gridDim((OH + OPTIMAL_TS_X - 1) /OPTIMAL_TS_X, (Nsize[i] * K * OW + OPTIMAL_TS_Y - 1) / OPTIMAL_TS_Y, 1); CUDA_CALL( cudaSetDevice(i) ); k_convolution_base<<>>(input_d[i], output_d[i], filter_d[i], Nsize[i], _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride, OH, OW); } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } // Download C matrix from GPU for (int i = 0; i < num_devices; i++) { // printf("Recieved to %d, amount : %x from %d MPI rank : %d\n", Nbegin[i], (Nsize[i]) * K * OH * OW * sizeof(float), i, mpi_rank); CUDA_CALL( cudaMemcpy(output + Nbegin[i] * K * OH * OW, output_d[i], (Nsize[i]) * K * OH * OW * sizeof(float), cudaMemcpyDeviceToHost) ); } // printf("Slave set from output[%d], stride all : [%d]\n", SendNodeOffset, SendNodeOffset * KOHOW); // printf("Slave set end output[%d], stride all : [%d]\n", N, N * KOHOW); #if (TIME_MEASURE) printf("Slave calculation complete : %f sec\n", timer_stop(0)); #endif // printf("Slave send from output[%d]\n", SendNodeOffset * C * OH * OW); MPI_Isend(output, SendNodeSize * K * OH * OW, MPI_FLOAT, 0, 2, MPI_COMM_WORLD, &stMpiRequest[2]); MPI_Wait(&stMpiRequest[2], &stMpiStatus); #if (TIME_MEASURE) printf("Slave send complete : %f sec\n", timer_stop(0)); #endif } #endif } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void convolution_init(int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); // printf("MPI rank : %d MPI world size :%d\n", mpi_rank, mpi_world_size); if (mpi_rank != 0) { const int SendNodeSize = N / 2; alloc_tensor((float**)&input, SendNodeSize, _C, _H, _W); alloc_tensor((float**)&output, SendNodeSize, _K, OH, OW); alloc_tensor((float**)&filter, _K, _C, _R, _S); // printf("Set slave memory pointer, input : %x Filter :% x output : %x\n", input, filter, output); } CUDA_CALL(cudaGetDeviceCount(&num_devices)); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Nbegin[i] = (_N / num_devices / mpi_world_size) * i; Nend[i] = (_N / num_devices / mpi_world_size) * (i + 1); Nsize[i] = Nend[i] - Nbegin[i]; } if (mpi_world_size == 2) { Nend[num_devices - 1] = mpi_rank == 0? (_N - (_N/mpi_world_size)) : (_N/mpi_world_size); Nsize[num_devices - 1] = Nend[num_devices - 1] - Nbegin[num_devices - 1]; } else { Nend[num_devices - 1] = _N; Nsize[num_devices - 1] = Nend[num_devices - 1] - Nbegin[num_devices - 1]; } // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&input_d[i], (Nsize[i]) * C * H * W * sizeof(float)) ); CUDA_CALL( cudaMalloc(&filter_d[i], K * C * R * S * sizeof(float)) ); CUDA_CALL( cudaMalloc(&output_d[i], (Nsize[i]) * K * OH * OW * sizeof(float)) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { // Do any post-matmul cleanup work here. // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }