#include "convolution.h" #include #include #include "util.h" #include #include "cuda_runtime.h" #define MAX_NODE 2 #define MAX_NUM_GPU 4 #define TS 8 #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; static float *in_d[MAX_NUM_GPU], *out_d[MAX_NUM_GPU], *fil_d[MAX_NUM_GPU]; static int num_devices = 1; static int NN[MAX_NUM_GPU]; static int size[MAX_NODE]; __global__ void conv( float * _input, float * _output, float * _filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { const int g_row = blockDim.x * blockIdx.x + threadIdx.x; const int g_col = blockDim.y * blockIdx.y + threadIdx.y; // Output file size definition int OH, OW; OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; int n, k, w; n = g_col /(_K * OW); w = g_col - (g_col / (_K * OW)) * (_K * OW); k = w / OW; w = w - k * OW; int col = w; // local colume int row = g_row; // local row // Boundary check if(g_row >= OH || g_col >= _N*_K*OW) return; int s_row = row * _stride - _pad; int s_col = col * _stride - _pad; float o = 0.0f; for (int c = 0; c < _C; c++) { for (int i = 0; i < _R; i++) { for (int j = 0; j < _S; j++) { int h = s_row + i * _dilation; int w = s_col + j * _dilation; if(h<0 || w<0 || h>=_H || w>=_W) continue; float in = _input[n*_C*_H*_W + c*_H*_W + h*_W + w]; float filter = _filter[k*_C*_R*_S + c*_R*_S + i*_S + j]; o += in * filter; } } } _output[n*_K*OH*OW + k*OH*OW + OW*row + col] = o; } void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int offset = 0; MPI_Request request; MPI_Status status; input = _input; output = _output; filter = _filter; if (mpi_rank == 0 && mpi_world_size == 2 && size[1] != 0) { MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); MPI_Isend(filter, _K*_C*_R*_S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request); if (size[mpi_rank] < MAX_NUM_GPU) { num_devices = size[mpi_rank]; } } else if (mpi_rank == 1 && size[mpi_rank] != 0) { alloc_tensor(&input, size[1], C, H, W); alloc_tensor(&output, size[1], K, OH, OW); alloc_tensor(&filter, _K, _C, _R, _S); MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(filter, _K*_C*_R*_S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); if (size[mpi_rank] < MAX_NUM_GPU) { num_devices = size[mpi_rank]; } } offset = 0; for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(in_d[i], input+offset, NN[i]*C*H*W*sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(fil_d[i], filter, C*K*R*S*sizeof(float), cudaMemcpyHostToDevice) ); offset += NN[i]*C*H*W; } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } for (int i = 0; i < num_devices; i++) { dim3 gridDim((OH+TS-1)/TS, (NN[i]*K*OW + TS - 1)/TS, 1); dim3 blockDim(TS, TS, 1); CUDA_CALL( cudaSetDevice(i) ); conv<<>>(in_d[i], out_d[i], fil_d[i], NN[i], _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride); } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } offset = 0; for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMemcpy(output + offset, out_d[i], NN[i]*K*OH*OW*sizeof(float), cudaMemcpyDeviceToHost) ); offset += NN[i]*K*OH*OW; } for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } if (mpi_rank == 0 && mpi_world_size == 2 && size[1] != 0) { MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status); } else if(mpi_rank == 1 && size[1] != 0) { MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request); } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); OH = (H+2*pad - dilation*(R-1)-1) / stride+1; OW = (W+2*pad - dilation*(S-1)-1) / stride+1; if (mpi_world_size == 2 && _N > 4) size[1] = _N/2; else size[1] = 0; size[0] = N - size[1]; if (size[mpi_rank] < MAX_NUM_GPU) { num_devices = size[mpi_rank]; for (int i=0; i