#include "convolution.h" #include "util.h" #include #include static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; int num_threads = 200; OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank != 0) { alloc_tensor(&input, N, C, H, W); alloc_tensor(&output, N, K, OH, OW); alloc_tensor(&filter, K, C, R, S); } int ns[mpi_world_size], ne[mpi_world_size]; for (int i = 0; i < mpi_world_size; i++) { ns[i] = N / mpi_world_size * i; ne[i] = N / mpi_world_size * (i + 1); } ne[mpi_world_size - 1] = N; if (mpi_world_size > 1) { if (mpi_rank == 0) { for (int i = 1; i < mpi_world_size; i++) { MPI_Send(input + ns[i] * C * H * W, (ne[i] - ns[i]) * C * H * W, MPI_FLOAT, i, 0, MPI_COMM_WORLD); MPI_Send(filter, K * C * R * S, MPI_FLOAT, i, 0, MPI_COMM_WORLD); } } else { MPI_Recv(input + ns[mpi_rank] * C * H * W, (ne[mpi_rank] - ns[mpi_rank]) * C * H * W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, nullptr); MPI_Recv(filter, K * C * R * S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, nullptr); } } #pragma omp parallel for num_threads(num_threads) collapse (3) schedule(auto) for (int n = ns[mpi_rank]; n < ne[mpi_rank]; ++n) { for (int k = 0; k < K; ++k) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { float o = 0.f; for (int c = 0; c < C; ++c) { for (int r = 0; r < R; ++r) { for (int s = 0; s < S; ++s) { int h = oh * stride - pad + r * dilation; int w = ow * stride - pad + s * dilation; if (h < 0 || h >= H || w < 0 || w >= W) continue; float i = input[n * C * H * W + c * H * W + h * W + w]; float f = filter[k * C * R * S + c * R * S + r * S + s]; o += i * f; } } } output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o; } } } } if (mpi_world_size > 1) { if (mpi_rank == 0) { for (int i = 1; i < mpi_world_size; i++) { MPI_Recv(output + ns[i] * K * OH * OW, (ne[i] - ns[i]) * K * OH * OW, MPI_FLOAT, i, 0, MPI_COMM_WORLD, nullptr); } } else { MPI_Send(output + ns[mpi_rank] * K * OH * OW, (ne[mpi_rank] - ns[mpi_rank]) * K * OH * OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD); } } } void convolution_init( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S; pad = _pad; dilation = _dilation; stride = _stride; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size); /* OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; if (mpi_rank != 0) { alloc_tensor(&input, N, C, H, W); alloc_tensor(&output, N, K, OH, OW); alloc_tensor(&filter, K, C, R, S); } */ } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { }