#include "mat_mul.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 #define THREADS_PER_BLOCK 32 #define WPT 8 #define RTS 4 int num_devices = 0; __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) { int row = threadIdx.x; int col = threadIdx.y; int global_row = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; int global_col = THREADS_PER_BLOCK * blockIdx.y + threadIdx.y; __shared__ float Asub[THREADS_PER_BLOCK][THREADS_PER_BLOCK]; __shared__ float Bsub[THREADS_PER_BLOCK][THREADS_PER_BLOCK]; int q = K / THREADS_PER_BLOCK; int r = K % THREADS_PER_BLOCK; if(r != 0) q = q + 1; float temp[WPT]; for (int w = 0; w < WPT; w++) temp[w] = 0.0f; for (int t = 0; t < q; t++) { for (int w = 0; w < WPT; w++) { int t_row = THREADS_PER_BLOCK * t + row; int t_col = THREADS_PER_BLOCK * t + col; if (t_col < K && (global_row + (w * RTS)) < M) Asub[row + w * RTS][col] = A[(global_row + (w * RTS))* K + t_col]; else Asub[row + w * RTS][col] = 0; if ((t_row + (w * RTS)) < K && global_col < N) Bsub[row + w * RTS][col] = B[(t_row + (w * RTS))* N + global_col]; else Bsub[row + w * RTS][col] = 0; } __syncthreads(); for (int k = 0; k < THREADS_PER_BLOCK; k++) { for (int w = 0; w < WPT; w++) { temp[w] += Asub[row + (w * RTS)][k] * Bsub[k][col]; } } __syncthreads(); } for (int w = 0; w < WPT; w++) { if (global_row + (w * RTS) >= M || global_col >= N) { return; } C[(global_row + (w * RTS)) * N + global_col] = temp[w]; } } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int M, N, K; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { int tpb = ((THREADS_PER_BLOCK + WPT - 1) / WPT); int ptb = (((Mend[i] - Mbegin[i]) + WPT - 1) / WPT); dim3 blockDim(tpb, THREADS_PER_BLOCK, 1); dim3 gridDim(((ptb + tpb - 1) / tpb), ((N + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK), 1); CUDA_CALL( cudaSetDevice(i) ); sgemm<<>>(a_d[i], b_d[i], c_d[i], (Mend[i] - Mbegin[i]), N, K); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); } Mend[num_devices - 1] = M; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K, (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }